Advertisement

Improving Change Detection Using Centre-Symmetric Local Binary Patterns

  • Rimjhim Padam SinghEmail author
  • Poonam Sharma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11942)

Abstract

Efficient change detection in real-time applications is a major research goal in computer vision. Several researchers have put efforts in this direction and have achieved notable performances in varied challenging situations. But handling all the challenges posed in real-time environments with a single change detection method is almost impracticable. On the other hand, ensemble based background modelling techniques have obtained improved results but they also suffer from trade-off between efficiency and hardware or time requirements, thereby hindering their real-time applicability. This paper proposes an effective hybrid change detection algorithm, light and simple enough to have an effective real-time applicability. The proposed hybrid change detection algorithm employs per-channel RGB colour features with centre-symmetric local binary patterns for pixel-modelling and feeds it to a sample-consensus classification technique for foreground segmentation. Finally, performance of the proposed technique has been tested on widely accepted change detection dataset namely, 2014 Change detection dataset (2014 CDnet dataset).

Keywords

Motion detection Texture representation Background model 

References

  1. 1.
    Barnich, O., Van Droogenbroeck, M.: ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 20(6), 1709–1724 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bilodeau, G.A., Jodoin, J.P., Saunier, N.: Change detection in feature space using local binary similarity patterns. In: International Conference on Computer and Robot Vision, CRV 2013, pp. 106–112. IEEE (2013)Google Scholar
  3. 3.
    Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45053-X_48CrossRefGoogle Scholar
  4. 4.
    Gao, Z., Cheong, L.F., Wang, Y.X.: Block-sparse RPCA for salient motion detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 1975–1987 (2014)CrossRefGoogle Scholar
  5. 5.
    Heikkila, M., Pietikainen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006)CrossRefGoogle Scholar
  6. 6.
    Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recogn. 42(3), 425–436 (2009)CrossRefGoogle Scholar
  7. 7.
    Ilyas, A., Scuturici, M., Miguet, S.: Real time foreground-background segmentation using a modified codebook model. In: Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2009, pp. 454–459. IEEE (2009)Google Scholar
  8. 8.
    Lee, Y., Jung, J., Kweon, I.S.: Hierarchical on-line boosting based background subtraction. In: 2011 17th Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV), pp. 1–5. IEEE (2011)Google Scholar
  9. 9.
    Liao, S., Zhao, G., Kellokumpu, V., Pietikäinen, M., Li, S.Z.: Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1301–1306. IEEE (2010)Google Scholar
  10. 10.
    Noh, S.J., Jeon, M.: A new framework for background subtraction using multiple cues. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7726, pp. 493–506. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37431-9_38CrossRefGoogle Scholar
  11. 11.
    Oliver, N.M., Rosario, B., Pentland, A.P.: A bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)CrossRefGoogle Scholar
  12. 12.
    St-Charles, P.L., Bilodeau, G.A.: Improving background subtraction using local binary similarity patterns. In: 2014 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 509–515. IEEE (2014)Google Scholar
  13. 13.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: CVPR, p. 2246. IEEE (1999)Google Scholar
  14. 14.
    Wang, B., Dudek, P.: A fast self-tuning background subtraction algorithm. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 395–398 (2014)Google Scholar
  15. 15.
    Wang, J., Bebis, G., Miller, R.: Robust video-based surveillance by integrating target detection with tracking. In: IEEE Conference on Computer Vision and Pattern Recognition Workshop, CVPRW 2006, p. 137. IEEE (2006)Google Scholar
  16. 16.
    Xue, G., Song, L., Sun, J., Wu, M.: Hybrid center-symmetric local pattern for dynamic background subtraction. In: 2011 IEEE International Conference on Multimedia and Expo, pp. 1–6. IEEE (2011)Google Scholar
  17. 17.
    Xue, G., Sun, J., Song, L.: Dynamic background subtraction based on spatial extended center-symmetric local binary pattern. In: 2010 IEEE International Conference on Multimedia and Expo, pp. 1050–1054. IEEE (2010)Google Scholar
  18. 18.
    Yang, S., Hao, K., Ding, Y., Liu, J.: Improved visual background extractor with adaptive range change. Memetic Comput. 10(1), 53–61 (2018)CrossRefGoogle Scholar
  19. 19.
    Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 2, pp. 28–31. IEEE (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Visvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations