Iris Recognition by Learning Fragile Bits on Multi-patches using Monogenic Riesz Signals

  • B. H. ShekarEmail author
  • Sharada S. Bhat
  • Leonid Mestetsky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11942)


Unconstrained, at-a-distance iris recognition systems endure the problem of fragile bits. Existence of fragile bits in candidate iris results into low recognition rates. Proposed approach utilizes fragile-bit information for classification of iris bits as consistent or inconsistent. We divide the candidate iris into patches and propose monogenic signals of Riesz wavelets to learn fragile bits in each patch. We propose a new feature descriptor, Riesz signal based binary pattern (RSBP) to extract the features from these patches. Each patch is assigned with a weight pivoted on the fragile bits present in it. Dissimilarity score between the two irises is obtained by adopting weighted mean Euclidean distance (WMED). Experiments are conducted using both near infra red (NIR) and visible wavelength (VW) images, obtained from the benchmark databases IITD, MMU v-2, CASIA-IrisV4-Distance and UBIRIS v2. Results justify the applicability of proposed approach for iris recognition.


Iris recognition Fragile bits Multi-patches Monogenic signal 



This work is supported jointly by the Department of Science and Technology, Government of India and Russian Foundation for Basic Research, Russian Federation under the grant No. INT/RUS/RFBR/P-248.


  1. 1.
    Institute of Automation, Chinese Academy of Sciences: CASIA Iris Database.,
  2. 2.
    Malaysia Multimedia University Iris Database.,
  3. 3.
    Daugman, J.: How iris recognition works. IEEE Trans. Circ. Syst. Video Technol. 14(1), 21–30 (2004)CrossRefGoogle Scholar
  4. 4.
    Depeursinge, A., Foncubierta-Rodriguez, A., Van de Ville, D., Muller, H.: Rotation-covariant texture learning using steerable Riesz wavelets. IEEE Trans. Image Process. 23(2), 898–908 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Felsberg, M., Sommer, G.: The monogenic scale-space: a unifying approach to phase-based image processing in scale-space. J. Math. Imaging Vis. 21(1–2), 5–26 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hollingsworth, K.P., Bowyer, K.W., Flynn, P.J.: The best bits in an iris code. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 964–973 (2009)CrossRefGoogle Scholar
  7. 7.
    Kaur, B., Singh, S., Kumar, J.: Robust iris recognition using moment invariants. Wirel. Pers. Commun. 99(2), 799–828 (2018)CrossRefGoogle Scholar
  8. 8.
    Kumar, A., Passi, A.: Comparison and combination of iris matchers for reliable personal authentication. Pattern Recogn. 43(3), 1016–1026 (2010)CrossRefGoogle Scholar
  9. 9.
    Marchant, R., Jackway, P.: Local feature analysis using a sinusoidal signal model derived from higher-order Riesz transforms. In: 2013 20th IEEE International Conference on Image Processing (ICIP), pp. 3489–3493. IEEE (2013)Google Scholar
  10. 10.
    Nguyen, K., Fookes, C., Jillela, R., Sridharan, S., Ross, A.: Long range iris recognition: a survey. Pattern Recogn. 72, 123–143 (2017)CrossRefGoogle Scholar
  11. 11.
    Pillai, J.K., Patel, V.M., Chellappa, R., Ratha, N.K.: Secure and robust iris recognition using random projections and sparse representations. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1877–1893 (2011)CrossRefGoogle Scholar
  12. 12.
    Proença, H.: Iris recognition: what is beyond bit fragility? IEEE Trans. Inf. Forensics Secur. 10(2), 321–332 (2015)CrossRefGoogle Scholar
  13. 13.
    Proenca, H., Alexandre, L.A.: Toward noncooperative iris recognition: a classification approach using multiple signatures. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 607–612 (2007)CrossRefGoogle Scholar
  14. 14.
    Proenca, H., Filipe, S., Santos, R., Oliveira, J., Alexandre, L.A.: The ubiris. v2: a database of visible wavelength iris images captured on-the-move and at-a-distance. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1529–1535 (2010)CrossRefGoogle Scholar
  15. 15.
    Raja, K.B., Raghavendra, R., Venkatesh, S., Busch, C.: Multi-patch deep sparse histograms for iris recognition in visible spectrum using collaborative subspace for robust verification. Pattern Recogn. Lett. 91, 27–36 (2017)CrossRefGoogle Scholar
  16. 16.
    Rajesh, D., Shekar, B.: Undecimated dual tree complex wavelet transform based face recognition. In: 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 720–726. IEEE (2016)Google Scholar
  17. 17.
    Rattani, A., Derakhshani, R.: Ocular biometrics in the visible spectrum: a survey. Image Vis. Comput. 59, 1–16 (2017)CrossRefGoogle Scholar
  18. 18.
    Shekar, B.H., Bhat, S.S.: Multi-patches iris based person authentication system using particle swarm optimization and fuzzy C-means clustering. In: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, vol. 42 (2017)Google Scholar
  19. 19.
    Shekar, B., Bhat, S.S.: Steerable Riesz wavelet based approach for iris recognition. In: 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pp. 431–436. IEEE (2015)Google Scholar
  20. 20.
    Vyas, R., Kanumuri, T., Sheoran, G., Dubey, P.: Co-occurrence features and neural network classification approach for iris recognition. In: 2017 Fourth International Conference on Image Information Processing (ICIIP), pp. 1–6. IEEE (2017)Google Scholar
  21. 21.
    Zhang, L., Li, H.: Encoding local image patterns using Riesz transforms: with applications to palmprint and finger-knuckle-print recognition. Image Vis. Comput. 30(12), 1043–1051 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mangalore UniversityMangaloreIndia
  2. 2.Government First Grade College AnkolaKarnatakaIndia
  3. 3.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations