Advertisement

A Polynomial Surface Fit Algorithm for Filling Holes in Point Cloud Data

  • Vishwanath S. TeggihalliEmail author
  • Ramesh Ashok Tabib
  • Adarsh Jamadandi
  • Uma Mudenagudi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11941)

Abstract

In this paper, we propose a novel framework for detecting and filling missing regions in point cloud data. We propose to investigate the properties of point cloud data and develop a framework that can detect boundaries of intricate holes in the point cloud data of complex shapes and fill the hole consequently. The holes in point cloud data are caused owing to many reasons like reflectance, transparency, occlusions etc. Detecting holes in point cloud data is a non-trivial task, since point cloud data is unstructured and comes with no adjacency/connectivity information. We propose a Centroid-Shift algorithm that exploits the distance of cluster centroid from the member points to detect the boundaries of holes, further we propose a polynomial surface fit framework to accurately fill the missing regions/holes without losing the original shape attributes of the objects. We demonstrate our framework on popular 3D objects, we provide qualitative results and report RMS error as the evaluation metric to measure the effectiveness of the hole-filling algorithm.

Keywords

Hole filling algorithm Hole detection Polynomial Surface Fit 

References

  1. 1.
    Attene, M., Campen, M., Kobbelt, L.: Polygon mesh repairing: an application perspective. ACM Comput. Surv. 45(2), 15:1–15:33 (2013).  https://doi.org/10.1145/2431211.2431214 CrossRefzbMATHGoogle Scholar
  2. 2.
    Bendels, G.H., Schnabel, R., Klein, R.: Detecting holes in point set surfaces. J. WSCG 14 (2006)Google Scholar
  3. 3.
    Chalmovianský, P., Jüttler, B.: Filling holes in point clouds. In: Wilson, M.J., Martin, R.R. (eds.) Mathematics of Surfaces. LNCS, vol. 2768, pp. 196–212. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39422-8_14CrossRefGoogle Scholar
  4. 4.
    Delaunay, B.N.: Sur la sphère vide. Bull. Acad. Sci. URSS 1934(6), 793–800 (1934)zbMATHGoogle Scholar
  5. 5.
    Guo, X., Xiao, J., Wang, Y.: A survey on algorithms of hole filling in 3D surface reconstruction. Vis. Comput. 34(1), 93–103 (2018).  https://doi.org/10.1007/s00371-016-1316-yCrossRefGoogle Scholar
  6. 6.
    Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1992, pp. 71–78. ACM, New York (1992).  https://doi.org/10.1145/133994.134011
  7. 7.
    Jun, Y.: A piecewise hole filling algorithm in reverse engineering. Comput.-Aided Des. 37(2), 263–270 (2005).  https://doi.org/10.1016/j.cad.2004.06.012, http://www.sciencedirect.com/science/article/pii/S0010448504001320MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP 2006, pp. 61–70. Eurographics Association, Aire-la-Ville, Switzerland, Switzerland (2006). http://dl.acm.org/citation.cfm?id=1281957.1281965
  9. 9.
    Setty, S., Ganihar, S.A., Mudenagudi, U.: Framework for 3D object hole filling. In: 2015 Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), pp. 1–4, December 2015.  https://doi.org/10.1109/NCVPRIPG.2015.7490062
  10. 10.
    Wu, X.J., Wang, M.Y., Han, B.: An automatic hole-filling algorithm for polygon meshes. Comput.-Aided Des. Appl. 5(6), 889–899 (2008).  https://doi.org/10.3722/cadaps.2008.889-899 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Vishwanath S. Teggihalli
    • 1
    Email author
  • Ramesh Ashok Tabib
    • 1
  • Adarsh Jamadandi
    • 1
  • Uma Mudenagudi
    • 1
  1. 1.K.L.E. Technological UniversityHubliIndia

Personalised recommendations