An Optimized, Low-Cost Off-grid Solar System: Design and Implementation

  • Pape Moussa Sonko
  • Diery Ngom
  • Mouhamed Ouesse
  • Assane GueyeEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 296)


This paper reports on the design and implementation of a low-cost off-grid solar installation system that maximizes the energy production for any given day. Our proposed solution consists of (1) a double axis solar tracker with electric actuators controlled by an Arduino board, (2) an MPPT (Maximum Power Point Tracking) power controller, with a capacity of 20 A, remotely accessible from a smartphone with a dedicated Android application that uses a Bluetooth connection and (3) a remote data logging system that periodically stores the installation data to an online database server using a Wifi connection. The overall cost of the system is about $215 ($72 for the regular and $143 for the solar tracker).


MPPT regulator Solar tracker Connected regulator 


  1. 1.
    Global Energy Architecture Performance Index Report 2017: Forum économique mondial (WEF) et le cabinet de conseil en stratégie Accenture Strategy, 22 mars 2017Google Scholar
  2. 2.
    Wole-Osho, I., Bamisile, O., Adun, H., Yusuf, I.: Comparison of renewable energy potential in relation to renewable energy policy in ECOW AS countries. 978-1-5090-3784-1/16/$31.00 ©2016 IEEEGoogle Scholar
  3. 3.
    Youm, I., Sarr, J., Sail, M., Kane, M.M.: Renewable energy activities in Senegal: a review. Renew. Sustain. Energy Rev. 4(l), 75–89 (2000)CrossRefGoogle Scholar
  4. 4.
    Mboup, S.B.: Comment le projet d’énergie solaire au Sénégal affectera t-il le complexe énergétique du pays, compte tenu des tendances actuelles du marché de l’énergie. In: 9th multi-year expert meeting on commodities and development, 12–13 October 2017, Geneva (2017)Google Scholar
  5. 5.
    Vasant, L.G., Pawar, V.R.: Optimization of solar-wind energy system power for battery charging using MPPT. In: International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS-2017) (2017)Google Scholar
  6. 6.
    Definition and explanations on the MPPT (Maximum Power Point Tracking). Accessed 17th September 2018
  7. 7.
    Srivastava, M., Agarwal, S., Sharma, E.: Design and simulation of disturbance and observe MPPT algorithm for 72 cell solar PV system. Int. J. Soft Comput. Eng. (IJSCE) 4(6) (2015). ISSN 2231-2307Google Scholar
  8. 8.
    Allamehzadeh, H.: Solar energy overview and maximizing power output of a solar array using sun trackers. In: 2016 IEEE Conference on Technologies for Sustainability (SusTech) (2016)Google Scholar
  9. 9.
    Makhija, S., Khatwani, A., Khan, M.F., Goel, V., Roja, M.M.: Design & implementation of an automated dual-axis solar tracker with data-logging. In: International Conference on Inventive Systems and Control (ICISC-2017) (2017)Google Scholar
  10. 10.
    Pathare, M., Datta, D., Valunjkar, R., Shetty, V., Sawant, A., Pai, S.: Designing and implementation of maximum power point tracking (MPPT) solar charge controller. In: 2017 International Conference on Nascent Technologies in the Engineering Field (ICNTE-2017) (2017)Google Scholar
  11. 11.
    Direction de la prévision et des études économiques (Dpee), Senegal: «Impact des délestages sur l’activité économique et le bien-être des populations». Accessed 1st Nov 2018

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Pape Moussa Sonko
    • 1
  • Diery Ngom
    • 1
  • Mouhamed Ouesse
    • 1
  • Assane Gueye
    • 1
    • 2
    Email author
  1. 1.Universite Alioune Diop de BambeyBambeySenegal
  2. 2.University of MarylandCollege ParkUSA

Personalised recommendations