WBAN Radio Channel Characteristics Between the Endoscope Capsule and on-Body Antenna

  • Mariella SärestöniemiEmail author
  • Carlos Pomalaza Raez
  • Markus Berg
  • Chaïmaâ Kissi
  • Matti Hämäläinen
  • Jari Iinatti
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 297)


This paper presents a study on the radio channel characteristics between an endoscope capsule and an on-body antenna in different parts of the small intestine with different on-body antenna location options. The study is conducted using finite integration technique based electromagnetic simulation software CST and one of its anatomical voxels. An endoscope capsule model with a dipole antenna is set inside different areas of the small intestine of the voxel model. A recently published highly-directive on-body antenna designed for on-in-body communications is used in the evaluations. Different rotation angles of the capsule are also considered both with a layer model and a voxel model. It is found that radio channel characteristics vary remarkably depending on the antenna location in the small intestine and location of the on-body antenna. Thus, the on-body antennas should be located carefully to ensure coverage over the whole intestine area. However, the path loss does not only depend on the distance between a capsule and the on-body antenna but also on the tissues between the capsule and on-body antennas. Furthermore, orientation of the capsule has also strong impact when linearly polarized antennas are used.


Capsule endoscopy Directive antenna Gastrointestinal monitoring Implant communications Ultra wideband Wireless Body Area Networks 



This research has been financially supported by the project WBAN Communications in the Congested Environments and in part by Academy of Finland 6Genesis Flagship (grant 318927). Ilkka Virtanen, Timo Mäkinen, and Jari Sillanpää from University of Oulu deserve acknowledgement for their help to enable the exhaustive simulations. Dr. Marko Sonkki from CWC, University of Oulu, is acknowledged for his participation on the on-body antenna design.


  1. 1.
    Ciuti, G., Menciassi, A., Dario, P.: Capsule endoscopy: from current achievements to open challenges. IEEE Rev. Biomed. Eng. 4, 59–72 (2011)CrossRefGoogle Scholar
  2. 2.
    Neumann, H., Fry, L.C., Nägela, A., Neurath, M.F.: Wireless capsule endoscopy of the small intestine: a review with future directions. Curr. Opin. Gastroenterol. 30(5), 463–471 (2014)CrossRefGoogle Scholar
  3. 3.
    Ara, P., Yu, K., Cheng, S., Dutkiewicz, E., Heimlich, M.C.: Human abdomen path-loss modeling and location estimation of wireless capsule endoscope using round-trip propagation loss. IEEE Sens. J. 18(8), 3266–3277 (2018)CrossRefGoogle Scholar
  4. 4.
    Chavez-Santiago, R., Wang, J., Balasinham, I.: The ultra wideband capsule endoscope. In: International Conference on Ultra Wideband (2013)Google Scholar
  5. 5.
    Stoa, S., Chavez-Santiago, R., Balasinham, I.: An ultra wideband communication channel model for capsule endoscopy. In: ISABEL 2014 (2014)Google Scholar
  6. 6.
    IEEE Standard for Local and metropolitan area networks _Part 15.6: Wireless Body Area Networks. IEEE Std 802.15.6-2012, pp. 1–271 (2012)Google Scholar
  7. 7.
    Särestöniemi, M., Pomalaza-Raez, C., Berg, M., Kissi, C., Hämäläinen, M., Iinatti, J.: In-body power distribution for abdominal monitoring and implant communications systems, ISWCS, September 2019Google Scholar
  8. 8.
    Särestöniemi, M., Pomalaza-Raez, C., Berg, M., Kissi, C., Hämäläinen, M., Iinatti, J.: Fat in the abdomen as a propagation medium in WBAN applications, Bodynets 2019 (2019)Google Scholar
  9. 9.
    Khaleghi, A., Chávez-Santiago, R., Liang, X., Balasingham, I., Leung, V.C.M., Ramstad, T.A.: On ultra wideband channel modeling for in-body communications. In: Proc. IEEE International Symposium on Wireless Pervasive Computing (ISWPC), 5–7 May 2010Google Scholar
  10. 10.
    Teshome, A., Kibret, B., Lai, D.T.H.: A review of implant communication technology in WBAN, progresses and challenges. IEEE Rev. Biomed. Eng. 12, 88–99 (2018)CrossRefGoogle Scholar
  11. 11.
    Leelatien, P., Ito, K., Saito, K., Sharma, M., Alomainy, A.: Channel characteristics and wireless telemetry performance of transplanted organ monitoring system using ultrawideband communication. IEEE J. Electromagnet. RF Microwaves Med. Biol. 2, 94–101 (2018)CrossRefGoogle Scholar
  12. 12.
    Asan, N.B., et al.: Intra-body microwave communication through adipose tissue. Healthc. Technol. Lett. 4, 115–121 (2017)CrossRefGoogle Scholar
  13. 13.
    Asan, N.B., et al.: Characterization of fat channel for intra-body communication at R-band frequencies. MDPI Sens. 18(9) (2018)Google Scholar
  14. 14.
    Särestöniemi, M., et al.: Measurement and simulation based study on the UWB channel characteristics on the abdomen area. In: ISMICT 2019 (2019)Google Scholar
  15. 15.
    Särestöniemi, M., Kissi, C., Pomalaza-Raez, C., Hämäläinen, M., Iinatti, J.: Impact of the antenna-body distance on the UWB on-body channel characteristics. In: ISMICT 2019 (2019)Google Scholar
  16. 16.
    Särestöniemi, M., Kissi, C., Pomalaza Raez, C., Hämäläinen, M., Iinatti, J.: Propagation and UWB channel characteristics on human abdomen area. In: EUCAP 2019 (2019)Google Scholar
  17. 17.
    Li, J., Nie, Z., Liu, Y., Wang, L., Hao, Y.: Characterization of in-body radio channels for wireless implants. IEEE Sens. J. 17(5), 1528–1537 (2017)CrossRefGoogle Scholar
  18. 18.
    Kissi, C., Särestöniemi, M., Raez, C.P., Sonkki, M., Srifi, M.N.: Low-UWB directive antenna for wireless capsule endoscopy localization. In: BodyNets 2018 (2018)Google Scholar
  19. 19.
    Kissi, C., et al.: Low-UWB receiving antenna for WCE localization. In: ISMICT 2019 Conference (2019)Google Scholar
  20. 20.
    Kissi, C., et al.: Low-UWB antennas in vicinity to human body. In: ISMICT 2019 Conference (2019)Google Scholar
  21. 21.
    Kissi, C., et al.: High-directivity antenna for low-UWB body area networks applications. In: International Symposium on Advanced Electrical and Communication Technologies (ISAECT), pp. 1–6 (2018)Google Scholar
  22. 22.
    Bao, Z.: Comparative study of dual-polarized and circularly-polarized antennas at 2.45 GHz for ingestible capsules. Trans. Antennas Propag. 67(3), 1488–1500CrossRefGoogle Scholar
  23. 23.
    Lei, W., Guo, Y.-X.: Design of dual-polarized wideband conformal loop antenna for capsule endoscopy systems (2017)Google Scholar
  24. 24.
    Yazdandoost, K.Y.: Antenna for wireless capsule endoscopy at ultra wideband frequency. In: International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (2017)Google Scholar
  25. 25.
    Lee, S.H., et al.: A wideband spiral antenna for ingestible capsule endoscope systems: experimental results in a human phantom and a pig. IEEE Trans. Biomed. Eng. 58, 1734–1741 (2011)CrossRefGoogle Scholar
  26. 26.
    CST Microwave Studio.
  27. 27.

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Mariella Särestöniemi
    • 1
    Email author
  • Carlos Pomalaza Raez
    • 2
  • Markus Berg
    • 1
  • Chaïmaâ Kissi
    • 3
  • Matti Hämäläinen
    • 1
  • Jari Iinatti
    • 1
  1. 1.Centre for Wireless CommunicationsUniversity of OuluOuluFinland
  2. 2.Department of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.Electronics and Telecommunication Systems Research Group, National School of Applied Sciences (ENSA)Ibn Tofail UniversityKenitraMorocco

Personalised recommendations