Advertisement

Capacitive Body-Coupled Communication in the 400–500 MHz Frequency Band

  • Robin BenarrouchEmail author
  • Arno Thielens
  • Andreia Cathelin
  • Antoine Frappé
  • Andreas Kaiser
  • Jan Rabaey
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 297)

Abstract

One approach to enable wireless communication between body-worn nodes is to use capacitive body-coupled communication (C-BCC). This technique, which uses capacitive electrodes as transducing elements, has previously been demonstrated at relatively low frequencies (<200 MHz) and hence also low bandwidths. This work presents a theoretical analysis of wireless C-BCC, between body worn electrodes at higher frequencies (420–510 MHz), offering the potential for higher data rates. The theory is confirmed both by numerical simulations (performed on a human body phantom), and actual wireless communication between two prototypes on the arm of a real human.

Keywords

Body area network Capacitive Body Coupled Communication Radio frequency Propagation 

References

  1. 1.
    Anderson, G.S., Sodini, C.G.: Body coupled communication: the channel and implantable sensors. In: 2013 IEEE International Conference on Body Sensor Networks, pp. 1–5. IEEE (2013)Google Scholar
  2. 2.
    Arenas, G.M., Gordillo, A.C.: Design and implementation of a body coupled communication system for streaming music. In: 2016 IEEE ANDESCON, pp. 1–4. IEEE (2016)Google Scholar
  3. 3.
    Bae, J., Cho, H., Song, K., Lee, H., Yoo, H.J.: The signal transmission mechanism on the surface of human body for body channel communication. IEEE Trans. Microw. Theory Tech. 60(3), 582–593 (2012)CrossRefGoogle Scholar
  4. 4.
    Chang, T.C., Weber, M.J., Charthad, J., Baltsavias, S., Arbabian, A.: Scaling of ultrasound-powered receivers for sub-millimeter wireless implants. In: 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 1–4. IEEE (2017)Google Scholar
  5. 5.
    Cho, N., Yoo, J., Song, S.J., Lee, J., Jeon, S., Yoo, H.J.: The human body characteristics as a signal transmission medium for intrabody communication. IEEE Trans. Microw. Theory Tech. 55(5), 1080–1086 (2007)CrossRefGoogle Scholar
  6. 6.
    Cotton, S.L., D’Errico, R., Oestges, C.: A review of radio channel models for body centric communications. Radio Sci. 49(6), 371–388 (2014)CrossRefGoogle Scholar
  7. 7.
    Das, D., Maity, S., Chatterjee, B., Sen, S.: Enabling covert body area network using electro-quasistatic human body communication. Sci. Rep. 9(1), 4160 (2019)CrossRefGoogle Scholar
  8. 8.
    Elgala, H., Mesleh, R., Haas, H.: Indoor optical wireless communication: potential and state-of-the-art. IEEE Commun. Mag. 49(9), 56–62 (2011)CrossRefGoogle Scholar
  9. 9.
    Fort, A., Keshmiri, F., Crusats, G.R., Craeye, C., Oestges, C.: A body area propagation model derived from fundamental principles: analytical analysis and comparison with measurements. IEEE Trans. Antennas Propag. 58(2), 503–514 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gabriel, S., Lau, R., Gabriel, C.: The dielectric properties of biological tissues: III. pParametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271 (1996)CrossRefGoogle Scholar
  11. 11.
    IEEE, P802.15 Working Group for Wireless Personal Area Networks (WPANs): Channel Model for Body Area Network (BAN), IEEE P802.15-08-0780-09-0006 (2009)Google Scholar
  12. 12.
    Katayama, N., Takizawa, K., Aoyagi, T., Takada, J.I., Li, H.B., Kohno, R.: Channel model on various frequency bands for wearable body area network. IEICE Trans. Commun. 92(2), 418–424 (2009)CrossRefGoogle Scholar
  13. 13.
    Mao, J., Yang, H., Zhao, B.: An investigation on ground electrodes of capacitive coupling human body communication. IEEE Trans. Biomed. Circuits Syst. 11(4), 910–919 (2017)CrossRefGoogle Scholar
  14. 14.
    Mazloum, N.S.: Body-Coupled Communications: Experimental Characterization, Channel Modelling and Physical Layer Design. Chalmers University of Technology (2008)Google Scholar
  15. 15.
    Norton, K.: The propagation of radio waves over the surface of the earth and in the upper atmosphere. Proc. Inst. Radio Eng. 24(10), 1367–1387 (1936)Google Scholar
  16. 16.
    Norton, K.A.: The propagation of radio waves over the surface of the earth and in the upper atmosphere. Proc. Inst. Radio Eng. 25(9), 1203–1236 (1937)Google Scholar
  17. 17.
    Pereira, M.D., Alvarez-Botero, G.A., de Sousa, F.R.: Characterization and modeling of the capacitive HBC channel. IEEE Trans. Instrum. Meas. 64(10), 2626–2635 (2015)CrossRefGoogle Scholar
  18. 18.
    Petrillo, L., Mavridis, T., Sarrazin, J., Dricot, J.M., Benlarbi-Delai, A., De Doncker, P.: Ban working frequency: a trade-off between antenna efficiency and propagation losses. In: The 8th European Conference on Antennas and Propagation (EuCAP 2014), pp. 3368–3369. IEEE (2014)Google Scholar
  19. 19.
    Rabaey, J.M.: The human intranet-where swarms and humans meet. IEEE Pervasive Comput. 14(1), 78–83 (2015)CrossRefGoogle Scholar
  20. 20.
    Thielens, A., et al.: A comparative study of on-body radio-frequency links in the 420 MHZ-2.4 GHZ range. Sensors 18(12), 4165 (2018)CrossRefGoogle Scholar
  21. 21.
    Mouser website: Covidien. Kendall ECG electrodes product data sheet. https://www.mouser.com/datasheet/2/813/H124SG-1022817.pdf. Accessed 29 May 2019
  22. 22.
    ST Microelectronics website: Sub-GHZ (430–470 MHz) transceiver development kit based on S2-LP. https://www.st.com/resource/en/data_brief/steval-fki433v2.pdf. Accessed 14 May 2019

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Robin Benarrouch
    • 1
    • 2
    • 3
    Email author
  • Arno Thielens
    • 3
    • 4
  • Andreia Cathelin
    • 1
  • Antoine Frappé
    • 2
  • Andreas Kaiser
    • 2
  • Jan Rabaey
    • 3
  1. 1.STMicroelectronics, Technology and Design PlatformsCrollesFrance
  2. 2.Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520 - IEMNLilleFrance
  3. 3.University of California BerkeleyBerkeleyUSA
  4. 4.Ghent University, imec, Department of Information TechnologyGhentBelgium

Personalised recommendations