Physical Activity and Sedentary Behavior Influences on Executive Function in Daily Living

  • Brett Baker
  • Darla CastelliEmail author
Part of the Cognitive Science and Technology book series (CSAT)


Today, work and learning environments are obesogenic, as individuals of all ages are seated for more than 6 h a day. This is despite the emerging evidence that increased cerebral blood flow may enhance executive function, immediately following a brief bout of physical activity. This chapter will provide an overview of the direct and indirect effects of physical activity from both acute and chronic perspectives. In addition, brain imaging evidence will be described. Specifically, one subsection would overview the effects of sedentary (i.e., sitting) and active behavior (i.e., standing and walking) on O2 uptake and neural activation on brain function and structure.


  1. Åberg, M. A. I., Pedersen, N. L., Torén, K., Svartengren, M., Bäckstrand, B., Johnsson, T., et al. (2009). Cardiovascular fitness is associated with cognition in young adulthood. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20906–20911.CrossRefGoogle Scholar
  2. Ahlskog, J. E., Geda, Y. E., Graff-Radford, N. R., & Petersen, R. C. (2011). Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. MayoClinic Proceedings, 86(9), 876–884.Google Scholar
  3. Albinet, C. T., Mandrick, K., Bernard, P. L., Perrey, S., & Blain, H. (2014). Improved cerebral oxygenation response and executive performance as a function of cardiorespiratory fitness in older women: A fNIRS study. Frontiers in Aging Neuroscience, 6, 272.CrossRefGoogle Scholar
  4. Athilingam, P., Moynihan, J., Chen, L., D’Aoust, R., Groer, M., & Kip, K. (2013). Elevated levels of interleukin 6 and C-reactive protein associated with cognitive impairment in heart failure. Congestive Heart Failure, 19(2), 92–98.CrossRefGoogle Scholar
  5. Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47–89.CrossRefGoogle Scholar
  6. Banich, M. T. (2009). Executive function: The search for an integrated account. Current Directions in Psychological Science, 18(2), 89–94.CrossRefGoogle Scholar
  7. Bediz, C. S., Oniz, A., Guducu, C., Ural Demirci, E., Ogut, H., Gunay, E., et al. (2016). Acute supramaximal exercise increases the brain oxygenation in relation to cognitive workload. Frontiers in Human Neuroscience, 10, 174.CrossRefGoogle Scholar
  8. Beurskens, R., Helmich, I., Rein, R., & Bock, O. (2014). Age-related changes in prefrontal activity during walking in dual-task situations: A fNIRS study. International Journal of Psychophysiology, 92(3), 122–128.CrossRefGoogle Scholar
  9. Brisswalter, J., Collardeau, M., & René, A. (2002). Effects of acute physical exercise characteristics on cognitive performance. Sports Medicine, 32(9), 555–566.CrossRefGoogle Scholar
  10. Brisswalter, J., Durand, M., Delignieres, D., & Legros, P. (1995). Optimal and non-optimal demand in a dual-task of pedaling and simple reaction time: Effects on energy expenditure and cognitive performance. Journal of Human Movement Studies, 29(1), 15–34.Google Scholar
  11. Callejas, A., Lupiáñez, J., & Tudela, P. (2004). The three attentional networks: On their independence and interactions. Brain and Cognition, 54(3), 225–227.CrossRefGoogle Scholar
  12. Campbell, Z., Zakzanis, K. K., Jovanovski, D., Joordens, S., Mraz, R., & Graham, S. J. (2009). Utilizing virtual reality to improve the ecological validity of clinical neuropsychology: An FMRI case study elucidating the neural basis of planning by comparing the Tower of London with a three-dimensional navigation task. Applied Neuropsychology, 16(4), 295–306.CrossRefGoogle Scholar
  13. Chaddock, L., Erickson, K. I., Prakash, R. S., Kim, J. S., Voss, M. W., VanPatter, M., et al. (2010). A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Research, 1358, 172–183.CrossRefGoogle Scholar
  14. Chan, R. C. K., Shum, D., Toulopoulou, T., & Chen, E. Y. H. (2008). Assessment of executive functions: Review of instruments and identification of critical issues. Archives of Clinical Neuropsychology, 23(2), 201–216.CrossRefGoogle Scholar
  15. Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87–101.CrossRefGoogle Scholar
  16. Cohen, J. D., Forman, S. D., Braver, T. S., Casey, B. J., Servan-Schreiber, D., & Noll, D. C. (1994). Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Human Brain Mapping, 1(4), 293–304.CrossRefGoogle Scholar
  17. Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., et al. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences, 101(9), 3316–3321.CrossRefGoogle Scholar
  18. Craft, S. (2009). The role of metabolic disorders in Alzheimer disease and vascular dementia: Two roads converged. Archives of Neurology, 66(3), 300–305.Google Scholar
  19. Craft, L. L., Zderic, T. W., Gapstur, S. M., Vaniterson, E. H., Thomas, D. M., Siddique, J., et al. (2012). Evidence that women meeting physical activity guidelines do not sit less: An observational inclinometry study. International Journal of Behavioral Nutrition and Physical Activity, 9(1), 122.CrossRefGoogle Scholar
  20. Donnelly, J. E., Hillman, C. H., Castelli, D., Etnier, J. L., Lee, S., Tomporowski, P., et al. (2016). Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Medicine and Science in Sports and Exercise, 48(6), 969–1225.CrossRefGoogle Scholar
  21. Dunstan, D. W., Kingwell, B. A., Larsen, R., Healy, G. N., Cerin, E., Hamilton, M. T., et al. (2012). Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care, 35(5), 976–983.CrossRefGoogle Scholar
  22. Dupuy, O., Gauthier, C. J., Fraser, S. A., Desjardins-Crèpeau, L., Desjardins, M., Mekary, S., et al. (2015). Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women. Frontiers in Human Neuroscience, 9, 66.CrossRefGoogle Scholar
  23. Dustman, R. E., Emmerson, R. Y., Ruhling, R. O., Shearer, D. E., Steinhaus, L. A., Johnson, S. C., et al. (1990). Age and fitness effects on EEG, ERPs, visual sensitivity, and cognition. Neurobiology of Aging, 11(3), 193–200.CrossRefGoogle Scholar
  24. Duvivier, B. M. F. M., Schaper, N. C., Bremers, M. A., van Crombrugge, G., Menheere, P. P. C. A., Kars, M., & Savelberg, H. H. C. M. (2013). Minimal intensity physical activity (Standing and walking) of longer duration improves insulin action and plasma lipids more than shorter periods of moderate to vigorous exercise (cycling) in sedentary subjects when energy expenditure is comparable. PLOS One, 8(2), e55542.Google Scholar
  25. Ehlis, A. C., Herrmann, M. J., Wagener, A., & Fallgatter, A. J. (2005). Multi-channel near-infrared spectroscopy detects specific inferior-frontal activation during incongruent Stroop trials. Biological Psychology, 69(3), 315–331.CrossRefGoogle Scholar
  26. Fox, K. R., & Hillsdon, M. (2007). Physical activity and obesity. Obesity Reviews, 8, 115–121.Google Scholar
  27. Giles, G. E., Brunyé, T. T., Eddy, M. D., Mahoney, C. R., Gagnon, S. A., Taylor, H. A., et al. (2014). Acute exercise increases oxygenated and deoxygenated hemoglobin in the prefrontal cortex. NeuroReport, 25(16), 1320–1325.CrossRefGoogle Scholar
  28. Green, D. J., Maiorana, A., O’driscoll, G., & Taylor, R. (2004). Effect of exercise training on endothelium‐derived nitric oxide function in humans. The Journal of Physiology, 561(1), 1–25.Google Scholar
  29. Guiney, H., & Machado, L. (2013). Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychonomic Bulletin & Review, 20(1), 73–86.CrossRefGoogle Scholar
  30. Habeck, C., Rakitin, B. C., Moeller, J., Scarmeas, N., Zarahn, E., Brown, T., et al. (2005). An event-related fMRI study of the neural networks underlying the encoding, maintenance, and retrieval phase in a delayed-match-to-sample task. Cognitive Brain Research, 23(2), 207–220.CrossRefGoogle Scholar
  31. Håkansson, M. L., Brown, H., Ghilardi, N., Skoda, R. C., & Meister, B. (1998). Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. Journal of Neuroscience, 18(1), 559–572.CrossRefGoogle Scholar
  32. Hallal, P. C., Andersen, L. B., Bull, F. C., Guthold, R., Haskell, W., Ekelund, U., & Lancet Physical Activity Series Working Group. (2012). Global physical activity levels: Surveillance progress, pitfalls, and prospects. The Lancet, 380(9838), 247–257.Google Scholar
  33. Hamacher, D., Hamacher, D., Rehfeld, K., Hökelmann, A., & Schega, L. (2015). The effect of a six-month dancing program on motor-cognitive dual-task performance in older adults. Journal of Aging and Physical Activity, 23(4), 647–652.Google Scholar
  34. Hamacher, D., Herold, F., Wiegel, P., Hamacher, D., & Schega, L. (2015). Brain activity during walking: A systematic review. Neuroscience & Biobehavioral Reviews, 57, 310–327.Google Scholar
  35. Hamilton, M. T., Hamilton, D. G., & Zderic, T. W. (2007). Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes, 56(11), 2655–2667.CrossRefGoogle Scholar
  36. Hanakawa, T., Katsumi, Y., Fukuyama, H., Honda, M., Hayashi, T., Kimura, J., et al. (1999). Mechanisms underlying gait disturbance in Parkinson’s disease: A single photon emission computed tomography study. Brain, 122(7), 1271–1282.CrossRefGoogle Scholar
  37. Hansen, A. L., Johnsen, B. H., Sollers, J. J., Stenvik, K., & Thayer, J. F. (2004). Heart rate variability and its relation to prefrontal cognitive function: The effects of training and detraining. European Journal of Applied Physiology, 93(3), 263–272.CrossRefGoogle Scholar
  38. Harrison, S. L., Sajjad, A., Bramer, W. M., Ikram, M. A., Tiemeier, H., & Stephan, B. C. (2015). Exploring strategies to operationalize cognitive reserve: A systematic review of reviews. Journal of Clinical and Experimental Neuropsychology, 37(3), 253–264.CrossRefGoogle Scholar
  39. Healy, G. N., Matthews, C. E., Dunstan, D. W., Winkler, E. A. H., & Owen, N. (2011). Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003–06. European Heart Journal, 32(5), 590–597.CrossRefGoogle Scholar
  40. Healy, G. N., Wijndaele, K., Dunstan, D. W., Shaw, J. E., Salmon, J., Zimmet, P. Z., et al. (2008). Objectively measured sedentary time, physical activity, and metabolic risk: The Australian Diabetes, Obesity and Lifestyle Study (AusDiab).Diabetes Care, 31(2), 369–371.CrossRefGoogle Scholar
  41. Hillman, C. H., Kramer, A. F., Belopolsky, A. V., & Smith, D. P. (2006). A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm. International Journal of Psychophysiology, 59(1), 30–39.CrossRefGoogle Scholar
  42. Hillman, C. H., Pontifex, M. B., Raine, L. B., Castelli, D. M., Hall, E. E., & Kramer, A. F. (2009). The effect of acute treadmill walking on cognitive control and academic achievement in preadolescent children. Neuroscience, 159(3), 1044–1054.CrossRefGoogle Scholar
  43. Holper, L., Muehlemann, T., Scholkmann, F., Eng, K., Kiper, D., & Wolf, M. (2010). Testing the potential of a virtual reality neurorehabilitation system during performance of observation imagery and imitation of motor actions recorded by wireless functional near-infrared spectroscopy (fNIRS). Journal of Neuroengineering and Rehabilitation, 7(1), 57.Google Scholar
  44. Holtzer, R., Mahoney, J. R., Izzetoglu, M., Izzetoglu, K., Onaral, B., & Verghese, J. (2011). fNIRS study of walking and walking while talking in young and old individuals. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 66(8), 879–887.CrossRefGoogle Scholar
  45. Holtzer, R., Rakitin, B. C., Steffener, J., Flynn, J., Kumar, A., & Stern, Y. (2009). Age effects on load-dependent brain activations in working memory for novel material. Brain Research, 1249, 148–161.CrossRefGoogle Scholar
  46. Jefferson, A. L., Massaro, J. M., Wolf, P. A., Seshadri, S., Au, R., Vasan, R. S., et al. (2007). Inflammatory biomarkers are associated with total brain volume: The Framingham Heart Study. Neurology, 68(13), 1032–1038.CrossRefGoogle Scholar
  47. Johnson, N. F., Kim, C., Clasey, J. L., Bailey, A., & Gold, B. T. (2012). Cardiorespiratory fitness is positively correlated with cerebral white matter integrity in healthy seniors. Neuroimage, 59(2), 1514–1523.CrossRefGoogle Scholar
  48. Kamijo, K., & Takeda, Y. (2010). Regular physical activity improves executive function during task switching in young adults. International Journal of Psychophysiology, 75(3), 304–311.CrossRefGoogle Scholar
  49. Katzman, R. (1993). Education and the prevalence of dementia and Alzheimer’s disease. Neurology, 43(1), 13–20.CrossRefGoogle Scholar
  50. Knight, Z. A., Hannan, K. S., Greenberg, M. L., & Friedman, J. M. (2010). Hyperleptinemia is required for the development of leptin resistance. PLoS ONE, 5(6), e11376.CrossRefGoogle Scholar
  51. Lambourne, K., & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 1341, 12–24.CrossRefGoogle Scholar
  52. Lees, S. J., & Booth, F. W. (2004). Sedentary death syndrome. Canadian Journal of Applied Physiology, 29(4), 447–460.CrossRefGoogle Scholar
  53. McMorris, T., & Graydon, J. (2000). The effect of incremental exercise on cognitive performance. International Journal of Sport Psychology, 31(1), 66–81.Google Scholar
  54. Messier, C., & Teutenberg, K. (2005). The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer’s disease. Neural Plasticity, 12(4), 311–328.CrossRefGoogle Scholar
  55. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks. Cognitive Psychology, 41(1), 49–100.CrossRefGoogle Scholar
  56. Molteni, E., Baselli, G., Cerutti, S., Bianchi, A. M., Contini, D., Caffini, M., et al. (2012). Load-dependent brain activation assessed by time-domain functional near-infrared spectroscopy during a working memory task with graded levels of difficulty. Journal of Biomedical Optics, 17(5), 056005.CrossRefGoogle Scholar
  57. Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140.CrossRefGoogle Scholar
  58. Moro, S. B., Bisconti, S., Muthalib, M., Spezialetti, M., Cutini, S., Ferrari, M., et al. (2014). A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: A functional near-infrared spectroscopy study. Neuroimage, 85, 451–460.CrossRefGoogle Scholar
  59. Moult, P. R., Cross, A., Santos, S. D., Carvalho, A. L., Lindsay, Y., Connolly, C. N., et al. (2010). Leptin regulates AMPA receptor trafficking via PTEN inhibition. Journal of Neuroscience, 30(11), 4088–4101.CrossRefGoogle Scholar
  60. Newcomer, S. C., Sauder, C. L., Kuipers, N. T., Laughlin, M. H., & Ray, C. A. (2008). Effects of posture on shear rates in human brachial and superficial femoral arteries. American Journal of Physiology-Heart and Circulatory Physiology, 294(4), H1833–H1839.CrossRefGoogle Scholar
  61. Ohsugi, H., Ohgi, S., Shigemori, K., & Schneider, E. B. (2013). Differences in dual-task performance and prefrontal cortex activation between younger and older adults. BMC Neuroscience, 14(1), 10.CrossRefGoogle Scholar
  62. Padilla, J., Sheldon, R. D., Sitar, D. M., & Newcomer, S. C. (2009). Impact of acute exposure to increased hydrostatic pressure and reduced shear rate on conduit artery endothelial function: A limb-specific response. American Journal of Physiology-Heart and Circulatory Physiology, 297(3), H1103–H1108.CrossRefGoogle Scholar
  63. Pekarski, S. E. (2004). A gravitational hypothesis of essential hypertension as a natural adaptation to increased gravitational stress caused by regular, prolonged sitting typical of modern life. Medical Science Monitor, 10(6), HY27–HY32.Google Scholar
  64. Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: An integrative review. Biological Psychology, 41(2), 103–146.CrossRefGoogle Scholar
  65. Prakash, R. S., Voss, M. W., Erickson, K. I., Lewis, J. M., Chaddock, L., Malkowski, E., et al. (2011). Cardiorespiratory fitness and attentional control in the aging brain. Frontiers in Human Neuroscience, 4, 229.CrossRefGoogle Scholar
  66. Reas, E. T., Laughlin, G. A., Bergstrom, J., Kritz-Silverstein, D., Richard, E. L., Barrett-Connor, E., et al. (2019). Lifetime physical activity and late-life cognitive function: The Rancho Bernardo study. Age and Ageing, 48(2), 241–246.CrossRefGoogle Scholar
  67. Redila, V. A., & Christie, B. R. (2006). Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience, 137(4), 1299–1307.CrossRefGoogle Scholar
  68. Salmela, J. H., & Ndoye, O. D. (1986). Cognitive distortions during progressive exercise. Perceptual and Motor Skills, 63(3), 1067–1072.Google Scholar
  69. Schinder, A. F., & Poo, M. M. (2000). The neurotrophin hypothesis for synaptic plasticity. Trends in Neurosciences, 23(12), 639–645.CrossRefGoogle Scholar
  70. Schmidt, R., Schmidt, H., Curb, J. D., Masaki, K., White, L. R., & Launer, L. J. (2002). Early inflammation and dementia: A 25-year follow-up of the Honolulu-Asia aging study. Annals of Neurology, 52(2), 168–174.CrossRefGoogle Scholar
  71. Seraglia, B., Gamberini, L., Priftis, K., Scatturin, P., Martinelli, M., & Cutini, S. (2011). An exploratory fNIRS study with immersive virtual reality: A new method for technical implementation. Frontiers in Human Neuroscience, 5, 176.CrossRefGoogle Scholar
  72. Shanley, L. J., Irving, A. J., & Harvey, J. (2001). Leptin enhances NMDA receptor function and modulates hippocampal synaptic plasticity. Journal of Neuroscience, 21(24), RC186–RC186.Google Scholar
  73. Shizgal, P. B., & Hyman, S. E. (2013). Homeostasis, motivation, and addictive states. Principles of Neural Science, 5, 1095–1115.Google Scholar
  74. Shvartz, E., Gaume, J. G., White, R. T., & Reibold, R. C. (1983). Hemodynamic responses during prolonged sitting. Journal of Applied Physiology, 54(6), 1673–1680.CrossRefGoogle Scholar
  75. Shvartz, E., Reibold, R. C., White, R. T., & Gaume, J. G. (1982). Hemodynamic responses in orthostasis following 5 hours of sitting. Aviation, Space and Environmental Medicine, 53(3), 226–231.Google Scholar
  76. Smith, E. E., & Jonides, J. (1997). Working memory: A view from neuroimaging. Cognitive Psychology, 33(1), 5–42.CrossRefGoogle Scholar
  77. Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(03), 448–460.CrossRefGoogle Scholar
  78. Stern, Y., Zarahn, E., Hilton, H. J., Flynn, J., DeLaPaz, R., & Rakitin, B. (2003). Exploring the neural basis of cognitive reserve. Journal of Clinical and Experimental Neuropsychology, 25(5), 691–701.CrossRefGoogle Scholar
  79. Stillman, C. M., Cohen, J., Lehman, M. E., & Erickson, K. I. (2016). Mediators of physical activity on neurocognitive function: A review at multiple levels of analysis. Frontiers in Human Neuroscience, 10, 626.CrossRefGoogle Scholar
  80. Stranahan, A. M., & Mattson, M. P. (2008). Impact of energy intake and expenditure on neuronal plasticity. NeuroMolecular Medicine, 10(4), 209–218.CrossRefGoogle Scholar
  81. Stranahan, A. M., & Mattson, M. P. (2011). Bidirectional metabolic regulation of neurocognitive function. Neurobiology of Learning and Memory, 96(4), 507–516.CrossRefGoogle Scholar
  82. Szostak, J., & Laurant, P. (2011). The forgotten face of regular physical exercise: A ‘natural’ anti-atherogenic activity. Clinical Science, 121(3), 91–106.CrossRefGoogle Scholar
  83. Themanson, J. R., & Hillman, C. H. (2006). Cardiorespiratory fitness and acute aerobic exercise effects on neuroelectric and behavioral measures of action monitoring. Neuroscience, 141(2), 757–767.CrossRefGoogle Scholar
  84. Themanson, J. R., Hillman, C. H., & Curtin, J. J. (2006). Age and physical activity influences on action monitoring during task switching. Neurobiology of Aging, 27(9), 1335–1345.CrossRefGoogle Scholar
  85. Themanson, J. R., Pontifex, M. B., & Hillman, C. H. (2008). Fitness and action monitoring: Evidence for improved cognitive flexibility in young adults. Neuroscience, 157(2), 319–328.Google Scholar
  86. Thosar, S. S., Johnson, B. D., Johnston, J. D., & Wallace, J. P. (2012). Sitting and endothelial dysfunction: The role of shear stress. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 18(12), RA173–RA180.Google Scholar
  87. Tomporowski, P. D. (2003a). Cognitive and behavioral responses to acute exercise in youths: A review. Pediatric Exercise Science, 15(4), 348–359.CrossRefGoogle Scholar
  88. Tomporowski, P. D. (2003b). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112(3), 297–324.CrossRefGoogle Scholar
  89. Tremblay, M. S., Colley, R. C., Saunders, T. J., Healy, G. N., & Owen, N. (2010). Physiological and health implications of a sedentary lifestyle. Applied Physiology, Nutrition and Metabolism, 35(6), 725–740.CrossRefGoogle Scholar
  90. Tudor-Locke, C., Craig, C. I., Thyfault, J. P., & Spence, J. C. (2013). Step-defined sedentary lifestyle index: <5000 steps/day. Applied Physiology, Nutrition and Metabolism, 38, 100–114. Scholar
  91. Van der Borght, K., Kóbor-Nyakas, D. É., Klauke, K., Eggen, B. J., Nyakas, C., Van der Zee, E. A., et al. (2009). Physical exercise leads to rapid adaptations in hippocampal vasculature: Temporal dynamics and relationship to cell proliferation and neurogenesis. Hippocampus, 19(10), 928–936.CrossRefGoogle Scholar
  92. Van der Ploeg, H. P., Chey, T., Korda, R. J., Banks, E., & Bauman, A. (2012). Sitting time and all-cause mortality risk in 222–497 Australian adults. Archives of Internal Medicine, 172(6), 494–500.CrossRefGoogle Scholar
  93. Van Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2(3), 266.CrossRefGoogle Scholar
  94. Vasta, R., Cutini, S., Cerasa, A., Gramigna, V., Olivadese, G., Arabia, G., & Quattrone, A. (2018). Physiological aging influence on brain hemodynamic activity during task-switching: A fNIRS study. Frontiers in Aging Neuroscience, 9, 433.Google Scholar
  95. Voelcker-Rehage, C., Godde, B., & Staudinger, U. M. (2010). Physical and motor fitness are both related to cognition in old age. European Journal of Neuroscience, 31(1), 167–176.CrossRefGoogle Scholar
  96. Voss, M. W., Carr, L. J., Clark, R., & Weng, T. (2014). Revenge of the “sit” II: Does lifestyle impact neuronal and cognitive health through distinct mechanisms associated with sedentary behavior and physical activity? Mental Health and Physical Activity, 7(1), 9–24.CrossRefGoogle Scholar
  97. Voss, M. W., Heo, S., Prakash, R. S., Erickson, K. I., Alves, H., Chaddock, L., et al. (2013). The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: Results of a one-year exercise intervention. Human Brain Mapping, 34(11), 2972–2985.CrossRefGoogle Scholar
  98. Weinstein, A. M., Voss, M. W., Prakash, R. S., Chaddock, L., Szabo, A., White, S. M., et al. (2012). The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain Behavior Immunology, 26(5), 811–819.CrossRefGoogle Scholar
  99. Weuve, J., Kang, J. H., Manson, J. E., Breteler, M. M. B., Ware, J. H., & Grodstein, F. (2004). Physical activity, including walking, and cognitive function in older women. JAMA: The Journal of the American Medical Association, 292(12), 1454–1461.Google Scholar
  100. WHO. (2009). Global health risks: Mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization.Google Scholar
  101. WHO. (2010). World health statistics 2010. World Health Organization.Google Scholar
  102. WHO. (2011). Global status report on noncommunicable diseases 2010. Geneva: World Health Organization.Google Scholar
  103. Williamson, R., McNeilly, A., & Sutherland, C. (2012). Insulin resistance in the brain: An old-age or new-age problem? Biochemical Pharmacology, 84(6), 737–745.CrossRefGoogle Scholar
  104. Yaffe, K., Lindquist, K., Penninx, B. W., Simonsick, E. M., Pahor, M., Kritchevsky, S., et al. (2003). Inflammatory markers and cognition in well-functioning African American and white elders. Neurology, 61(1), 76–80.CrossRefGoogle Scholar
  105. Yanagisawa, H., Dan, I., Tsuzuki, D., Kato, M., Okamoto, M., Kyutoku, Y., et al. (2010). Acute moderate exercise elicits increased dorsolateral prefrontal activation and improves cognitive performance with Stroop test. Neuroimage, 50(4), 1702–1710.CrossRefGoogle Scholar
  106. Zhu, D. C., Zacks, R. T., & Slade, J. M. (2010). Brain activation during interference resolution in young and older adults: An fMRI study. NeuroImage, 50(2), 810–817.CrossRefGoogle Scholar
  107. Zysset, S., Schroeter, M. L., Neumann, J., & von Cramon, D. Y. (2007). Stroop interference, hemodynamic response and aging: An event-related fMRI study. Neurobiology of Aging, 28(6), 937–946.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.The University of Texas at AustinAustinUSA

Personalised recommendations