Advertisement

Adaptive Control of Thought-Rational (ACT-R): Applying a Cognitive Architecture to Neuroergonomics

  • Nayoung Kim
  • Chang S. NamEmail author
Chapter
  • 60 Downloads
Part of the Cognitive Science and Technology book series (CSAT)

Abstract

For neuroergonomists who wish to apply Adaptive Control of Thought-Rational (ACT-R) to investigate the human mind and its structure including learning, performance, and problem-solving skills, this chapter aims at providing an overview of ACT-R with an emphasis on its modules, buffers, and sub-symbolic levels. ACT-R is a high-level computational simulation of human cognitive processing and one of the cognition theories that seek to predict human performance in real-world settings. A group of previous studies on behavioral- and neural-based cognitive modeling of human cognition using ACT-R will also be discussed. Finally, this chapter presents future directions of ACT-R for neuroergonomics research.

References

  1. Anderson, J. R. (1983). Cognitive science series. The architecture of cognition. Hillsdale, NJ, US.Google Scholar
  2. Anderson, J. R. (2007). How can the human mind occur in the physical universe? Oxford University Press.Google Scholar
  3. Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind, 111(4), 1036–1060.  https://doi.org/10.1037/0033-295X.111.4.1036.CrossRefGoogle Scholar
  4. Anderson, J. R., Carter, C. S., Fincham, J. M., Qin, Y., Ravizza, S. M., & Rosenberg-lee, M. (2008). Using fMRI to test models of complex cognition. Cog, 32(8), 1323–1348.  https://doi.org/10.1080/03640210802451588.CrossRefGoogle Scholar
  5. Anderson, J. R., Qin, Y., Jung, K. J., & Carter, C. S. (2007). Information-processing modules and their relative modality specificity. Cognitive psychology, 54(3), 185–217.Google Scholar
  6. Cassenti, D. N., Kerick, S. E., & McDowell, K. (2011). Observing and modeling cognitive events through event-related potentials and ACT-R. Cognitive Systems Research, 12(1), 56–65.  https://doi.org/10.1016/j.cogsys.2010.01.002.CrossRefGoogle Scholar
  7. Gray, W. D., Schoelles, M. J., & Sims, C. R. (2005). Adapting to the task environment : Explorations in expected value. Action editor : Christian Schunn, 6, 27–40.  https://doi.org/10.1016/j.cogsys.2004.09.004.CrossRefGoogle Scholar
  8. Kim, N., Kim, W., Yun, M. H., & Nam, C. S. (2018). Behavioral and neural correlates of hysteresis effects during multitasking, 2010–2012.  https://doi.org/10.1177/1541931218621003.CrossRefGoogle Scholar
  9. Laird, J. E. (2012). The SOAR cognitive architecture. MIT press.Google Scholar
  10. Langley, P., Laird, J. E., & Rogers, S. (2009). Cognitive architectures: Research issues and challenges. Coginitive Systems Research, 10(2), 141–160.  https://doi.org/10.1016/j.cogsys.2006.07.004.CrossRefGoogle Scholar
  11. Lebiere, C., & Anderson, R. A. (1993). A connectionist implementation of the ACT-R production system. In The Fifteenth Annual Conference of the Cognitive Science Society (pp. 635–640).Google Scholar
  12. Lebiere, C., Anderson, J. R., & Bothell, D. (2002). Multi-tasking and cognitive workload in an ACT-R model of a simplified air traffic control task. Paper presented at the 10th Conference on Computer Generated Forces and Behavioral Representation, Norfolk, VA.Google Scholar
  13. Lebiere, C., Anderson, J. R., Bothell, D., Lebiere, C., & Anderson, J. R. (2001). Multi-tasking and cognitive workload in an ACT- R model of a simplified air traffic control task.Google Scholar
  14. Matessa, M. (2008). An ACT-R representation of information processing in autism ACT-R. In Proceedings of the Thirtieth Annual Conference of the Cognitive Science Society (pp. 2168–2173).Google Scholar
  15. McKendrick, R., & Parasuraman, R. (2014). Using functional near infrared spectroscopy (fNIRS) to evaluate the neurocognitive effects of transient events: Design matrix mixed effects analysis. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (pp. 235–239). Los Angeles, CA: Sage Publications.Google Scholar
  16. Nijboer, M., Borst, J., Van Rijn, H., & Taatgen, N. (2016). Contrasting single and multi-component working-memory systems in dual tasking. Cognitive Psychology, 86, 1–26.  https://doi.org/10.1016/j.cogpsych.2016.01.003.CrossRefGoogle Scholar
  17. Parasuraman, R., Christensen, J., & Grafton, S. (2012). Neuroergonomics: The brain in action and at work. Neuroimage, 59(1), 1.CrossRefGoogle Scholar
  18. Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59.CrossRefGoogle Scholar
  19. Salvucci, D. D., Kushleyeva, Y., & Lee, F. J. (2004). Toward an ACT-R general executive for human multitasking. In ICCM (pp. 267–272).Google Scholar
  20. Smart, P. R., Scutt, T., Sycara, K., & Shadbolt, N. R. (2016). Integrating ACT-R cognitive models with the unity game engine (pp. 74–86).Google Scholar
  21. Sun, R. (2006). The CLARION cognitive architecture: Extending cognitive modeling to social simulation. In Cognition and Multi-Agent Interaction (pp. 79–99).CrossRefGoogle Scholar
  22. Sun, R. (2007). Cognitive social simulation incorporating cognitive architectures. IEEE Intelligent Systems, 22(5).CrossRefGoogle Scholar
  23. Taatgen, N., & Anderson, R. (2010). The past, present, and future of cognitive architectures. Topics in Cognitive Science, 2(4), 693–704.  https://doi.org/10.1111/j.1756-8765.2009.01063.x.CrossRefGoogle Scholar
  24. Taatgen, N., Lebiere, C., & Anderson, J. (2006). Modeling paradigms in ACT-R. In Cognition and Multi-agent Interaction: From Cognitive Modeling to Social Simulation (pp. 29–52).Google Scholar
  25. Taatgen, N. A., & Lee, F. J. (2003). Production compilation: A simple mechanism to model complex skill acquisition. Human Factors, 45(1), 61–76.CrossRefGoogle Scholar
  26. Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, competing accumulator model. Psychological Review, 108(3), 550.Google Scholar
  27. van Maanen, L., & Hedderik van Rijn, N. T. (2012). RACE/A: An architectural account of the interactions between learning, task control, and retrieval dynamics. Cognitive Science, 36, 62–101.  https://doi.org/10.1111/j.1551-6709.2011.01213.x.CrossRefGoogle Scholar
  28. Van Vugt, M. K. (2014). NeuroImage cognitive architectures as a tool for investigating the role of oscillatory power and coherence in cognition. NeuroImage, 85, 685–693.  https://doi.org/10.1016/j.neuroimage.2013.09.076.CrossRefGoogle Scholar
  29. Van Vugt, M. K. & Groningen, A. G. (2012). Relating ACT-R buffer activation to EEG activity during an attentional blink task. In N. Rußwinkel, U. Drewitz, & H. van Rijn (Eds.), (p. 218).Google Scholar
  30. Whitehill, J. (2013). Understanding ACT-R—An outsider’s perspective. arXiv [Preprint]. arXiv:1306.0125.
  31. Wilson, G. F., & Russell, C. A. (2007). Performance enhancement in an uninhabited air vehicle task using psychophysiologically determined adaptive aiding. Human Factors, 49(6), 1005–1018.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Edward P. Fitts Department of Industrial & Systems EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations