The EEG Cookbook: A Practical Guide to Neuroergonomics Research

  • Nathan Sanders
  • Sanghyun Choo
  • Chang S. NamEmail author
Part of the Cognitive Science and Technology book series (CSAT)


Conducting an EEG-based neuroergonomics experiment can be a daunting task for novice researchers. This chapter provides an overview of three aspects of EEG research which we hope will help novice researchers efficiently produce meaningful and replicable results: power analysis, data preprocessing, and reporting. We explain why power analysis and sample size estimation are critical yet often overlooked aspects of experimental research and describe the most common measures of effect size likely to be encountered, Cohen’s d and eta-squared. We also provide a list of powerful (and free) power analysis tools to facilitate the actual calculations. We also provide step-by-step instructions for data preprocessing with EEGLAB which can be used in preparation for subsequent ERP or connectivity analyses. This includes filtering, artifact removal and correction, independent component analysis, and source localization. Finally, we condense EEG reporting guidelines into a checklist which can be used to ensure that your manuscript draft follows best practices.


  1. Acunzo, D. J., MacKenzie, G., & van Rossum, M. C. W. (2012). Systematic biases in early ERP and ERF components as a result of high-pass filtering. Journal of Neuroscience Methods, 209(1), 212–218. Scholar
  2. Bezeau, S., & Graves, R. (2003). Statistical power and effect sizes of clinical neuropsychology research. Journal of Clinical and Experimental Neuropsychology, 23(3), 399–406. Scholar
  3. Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.-M., & Robbins, K. A. (2015). The PREP pipeline: Standardized preprocessing for large-scale EEG analysis. Frontiers in Neuroinformatics, 9, 1–20. Scholar
  4. Cohen, B. H., & Lea, R. B. (2004). Essentials of statistics for the social and behavioral sciences. Hoboken: Wiley. ISBN 0-471-22031-0.Google Scholar
  5. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. New York: Routledge. ISBN 978-1-134-74270-7.Google Scholar
  6. Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159. Scholar
  7. Delorme, A., Mullen, T., Kothe, C., Akalin Acar, Z., Bigdely-Shamlo, N., Vankov, A., & Makeig, S. (2011). EEGLAB, SIFT, NFT, BCILAB, and ERICA: New tools for advanced EEG processing. Computational Intelligence and Neuroscience, 2011, 1–12. Scholar
  8. Dien, J. (1998). Issues in the application of the average reference: Review, critiques, and recommendations. Behavior Research Methods, Instruments, and Computers, 30(1), 34–43. Scholar
  9. Faul, F., Erdfelder, E., Lang, A., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. IEEE International Symposium on Information Theory Proceedings, 39(2), 175–191. Scholar
  10. Guo, Y., Logan, H. L., Glueck, D. H., & Muller, K. E. (2013). Selecting a sample size for studies with repeated measures. BMC Medical Research Methodology, 13(1).
  11. Ioannidis, J. (2008). Why most discovered true associations are inflated. Epidemiology, 19(6), 640–648. Scholar
  12. Ioannidis, J. P. A. (2005). Why most published research findings are false. PLoS Medicine, 2(8), 0696–0701. Scholar
  13. Johnson, V. E., Payne, R. D., Wang, T., Asher, A., & Mandal, S. (2017). On the reproducibility of psychological science. Journal of the American Statistical Association, 112(517), 1–10. Scholar
  14. Keil, A., Debener, S., Gratton, G., Junghöfer, M., Kappenman, E. S., Luck, S. J., … Yee, C. M. (2014). Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology, 51(1), 1–21. Scholar
  15. Kim, J., & Seo, B. S. (2013). How to calculate sample size and why. Clinics in Orthopedic Surgery, 5(3), 235–242. Scholar
  16. Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Frontiers in Psychology, 4(November), 1–12. Scholar
  17. Larson, M. J., & Carbine, K. A. (2017). Sample size calculations in human electrophysiology (EEG and ERP) studies: A systematic review and recommendations for increased rigor. International Journal of Psychophysiology, 111, 33–41. Scholar
  18. Lenth, R. V. (2001). Some practical guidelines for effective sample size determination. The American Statistician, 55(3), 187–193.MathSciNetCrossRefGoogle Scholar
  19. Luck, S. J. (2004). Ten simple rules for designing and interpreting ERP experiments. Components, 249, 17–32. Retrieved from
  20. Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.Google Scholar
  21. Mullen, T. R. (2014). The dynamic brain: Modeling neural dynamics and interactions from human electrophysiological recordings (Order No. 3639187). Available from Dissertations & Theses @ University of California; ProQuest Dissertations & Theses A&I. (1619637939).Google Scholar
  22. Mullen, T. R., Kothe, C. A. E., Chi, Y. M., Ojeda, A., Kerth, T., Makeig, S., … Cauwenberghs, G. (2015). Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Transactions on Biomedical Engineering, 62(11), 2553–2567. Scholar
  23. Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: Measures of effect size for some common research designs. Psychological Methods, 8(4), 434–447. Scholar
  24. Picton, T., Ritter, W., Ruchkin, D., Rugg, M., Taylor, M., Bentin, S., … Miller, G. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37(2), 127–152. Scholar
  25. Richardson, J. T. E. (2011). Eta squared and partial eta squared as measures of effect size in educational research. Educational Research Review, 6(2), 135–147. Scholar
  26. Sawilowsky, S. S. (2017). New effect size rules of thumb. Journal of Modern Applied Statistical Methods, 8(2), 597–599. Scholar
  27. Seth, A. K., Barrett, A. B., & Barnett, L. (2015). Granger causality analysis in neuroscience and neuroimaging. Journal of Neuroscience, 35(8), 3293–3297. Scholar
  28. Widmann, A., Schröger, E., & Maess, B. (2015). Digital filter design for electrophysiological data–a practical approach. Journal of neuroscience methods, 250, 34–46.Google Scholar
  29. Winkler, I., Debener, S., Muller, K. R., & Tangermann, M. (2015). On the influence of high-pass filtering on ICA-based artifact reduction in EEG-ERP. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (pp. 4101–4105) 2015November.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Edward P. Fitts Department of Industrial & Systems EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations