Advertisement

Brain Basics in Neuroergonomics

  • Bryn Farnsworth von CederwaldEmail author
Chapter
  • 59 Downloads
Part of the Cognitive Science and Technology book series (CSAT)

Abstract

This chapter provides an introduction to (1) the fundamental components of neuroanatomy and brain function, (2) how brain processes give rise to behaviors that are relevant to study from a neuroergonomic perspective, and (3) how these brain processes can be detected and investigated with neuroimaging methods typically employed in neuroergonomics.

References

  1. Abbott, S. M., Arnold, J. M., Chang, Q., Miao, H., Ota, N., Cecala, C., … Gillette, M. U. (2013). Signals from the brainstem sleep/wake centers regulate behavioral timing via the circadian clock. PLoS ONE, 8(8).  https://doi.org/10.1371/journal.pone.0070481.CrossRefGoogle Scholar
  2. Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372(6507), 669–672.  https://doi.org/10.1038/372669a0.CrossRefGoogle Scholar
  3. Alexander, G., DeLong, M., & Strick, P. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9(1), 357–381.  https://doi.org/10.1146/annurev.neuro.9.1.357.CrossRefGoogle Scholar
  4. Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends in Neurosciences, 13(7), 266–271.  https://doi.org/10.1016/0166-2236(90)90107-l.CrossRefGoogle Scholar
  5. Allaman, I., Bélanger, M., & Magistretti, P. J. (2011). Astrocyte–neuron metabolic relationships: For better and for worse. Trends in Neurosciences, 34(2), 76–87.  https://doi.org/10.1016/j.tins.2010.12.001.CrossRefGoogle Scholar
  6. Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology Review, 16(1), 17–42.  https://doi.org/10.1007/s11065-006-9002-x.CrossRefGoogle Scholar
  7. Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M., Ferretti, R. E., Leite, R. E., … Herculano-Houzel, S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. The Journal of Comparative Neurology, 513(5), 532–541.  https://doi.org/10.1002/cne.21974.CrossRefGoogle Scholar
  8. Battaglia, F. P., Benchenane, K., Sirota, A., Pennartz, C. M., & Wiener, S. I. (2011). The hippocampus: Hub of brain network communication for memory. Trends in Cognitive Sciences.  https://doi.org/10.1016/j.tics.2011.05.008.CrossRefGoogle Scholar
  9. Baxter, M. G., & Chiba, A. A. (1999). Cognitive functions of the basal forebrain. Current Opinion in Neurobiology, 9(2), 178–183.  https://doi.org/10.1016/s0959-4388(99)80024-5.CrossRefGoogle Scholar
  10. Bechara, A., Damasio, H., Damasio, A. R., & Lee, G. P. (1999). Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. The Journal of Neuroscience, 19(13), 5473–5481.  https://doi.org/10.1523/jneurosci.19-13-05473.1999.CrossRefGoogle Scholar
  11. Behrens, T. E., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. A., Boulby, P. A., … Matthews, P. M. (2003). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6(7), 750–757.  https://doi.org/10.1038/nn1075.CrossRefGoogle Scholar
  12. Buckner, R. (2013). The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron, 80(3), 807–815.  https://doi.org/10.1016/j.neuron.2013.10.044.CrossRefGoogle Scholar
  13. Burns, R. S., Chiueh, C. C., Markey, S. P., Ebert, M. H., Jacobowitz, D. M., & Kopin, I. J. (1983). A primate model of parkinsonism: Selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proceedings of the National Academy of Sciences, 80(14), 4546–4550.  https://doi.org/10.1073/pnas.80.14.4546.CrossRefGoogle Scholar
  14. Chau, A., Salazar, A. M., Krueger, F., Cristofori, I., & Grafman, J. (2015). The effect of claustrum lesions on human consciousness and recovery of function. Consciousness and Cognition, 36, 256–264.  https://doi.org/10.1016/j.concog.2015.06.017.CrossRefGoogle Scholar
  15. Crick, F. C., & Koch, C. (2005). What is the function of the claustrum? Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 1271–1279.Google Scholar
  16. Defelipe, J., Markram, H., & Rockland, K. S. (2012). The neocortical column. Frontiers in Neuroanatomy, 6.  https://doi.org/10.3389/fnana.2012.00005.
  17. DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences, 13(7), 281–285.  https://doi.org/10.1016/0166-2236(90)90110-v.CrossRefGoogle Scholar
  18. Dogan, I., Eickhoff, S. B., Schulz, J. B., Shah, N. J., Laird, A. R., Fox, P. T., & Reetz, K. (2013). Consistent neurodegeneration and its association with clinical progression in Huntingtons disease: A coordinate-based meta-analysis. Neurodegenerative Diseases, 12(1), 23–35.  https://doi.org/10.1159/000339528.CrossRefGoogle Scholar
  19. Dolcos, F., Labar, K. S., & Cabeza, R. (2004). Interaction between the amygdala and the medial temporal lobe memory system predicts better memory for emotional events. Neuron, 42(5), 855–863.  https://doi.org/10.1016/s0896-6273(04)00289-2.CrossRefGoogle Scholar
  20. Eichenbaum, H. (2004). Hippocampus: Cognitive processes and neural representations that underlie declarative memory. Neuron, 44, 109–120.CrossRefGoogle Scholar
  21. Elbert, T., Flor, H., Birbaumer, N., Knecht, S., Hampson, S., Larbig, W., & Taub, E. (1994). Extensive reorganization of the somatosensory cortex in adult humans after nervous system injury. NeuroReport, 5(18), 2593–2597.  https://doi.org/10.1097/00001756-199412000-00047.CrossRefGoogle Scholar
  22. Feinstein, J. S., Buzza, C., Hurlemann, R., Follmer, R. L., Dahdaleh, N. S., Coryell, W. H., et al. (2013). Fear and panic in humans with bilateral amygdala damage. Nature Neuroscience, 16(3), 270–272.  https://doi.org/10.1038/nn.3323.CrossRefGoogle Scholar
  23. Feldman, D. E., & Brecht, M. (2005). Map plasticity in somatosensory cortex. Science, 310(5749), 810–815.  https://doi.org/10.1126/science.1115807.CrossRefGoogle Scholar
  24. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119(2), 593–609.  https://doi.org/10.1093/brain/119.2.593.CrossRefGoogle Scholar
  25. Girardeau, G., Benchenane, K., Wiener, S. I., Buzsáki, G., & Zugaro, M. B. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience, 12(10), 1222–1223.  https://doi.org/10.1038/nn.2384.CrossRefGoogle Scholar
  26. Graeber, M. B., & Streit, W. J. (2009). Microglia: Biology and pathology. Acta Neuropathologica, 119(1), 89–105.  https://doi.org/10.1007/s00401-009-0622-0.CrossRefGoogle Scholar
  27. Halassa, M. M., Florian, C., Fellin, T., Munoz, J. R., Lee, S., Abel, T., … Frank, M. G. (2009). Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron, 61(2), 213–219.  https://doi.org/10.1016/j.neuron.2008.11.024.CrossRefGoogle Scholar
  28. Hausdorff, J. M., Cudkowicz, M. E., Firtion, R., Wei, J. Y., & Goldberger, A. L. (1998). Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinsons disease and Huntingtons disease. Movement Disorders, 13(3), 428–437.  https://doi.org/10.1002/mds.870130310.CrossRefGoogle Scholar
  29. Hyman, B., Hoesen, G. V., Damasio, A., & Barnes, C. (1984). Alzheimers disease: Cell-specific pathology isolates the hippocampal formation. Science, 225(4667), 1168–1170.  https://doi.org/10.1126/science.6474172.CrossRefGoogle Scholar
  30. Ikeda, K., Kawakami, K., Onimaru, H., Okada, Y., Yokota, S., Koshiya, N., … Koizumi, H. (2016). The respiratory control mechanisms in the brainstem and spinal cord: Integrative views of the neuroanatomy and neurophysiology. The Journal of Physiological Sciences, 67(1), 45–62.  https://doi.org/10.1007/s12576-016-0475-y.CrossRefGoogle Scholar
  31. Ikemoto, S., & Panksepp, J. (1999). The role of nucleus accumbens dopamine in motivated behavior: A unifying interpretation with special reference to reward-seeking. Brain Research Reviews, 31(1), 6–41.  https://doi.org/10.1016/s0165-0173(99)00023-5.CrossRefGoogle Scholar
  32. Koziol, L. F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., … Yamazaki, T. (2014). Consensus paper: The cerebellums role in movement and cognition. The Cerebellum, 13(1), 151–177.  https://doi.org/10.1007/s12311-013-0511-x.CrossRefGoogle Scholar
  33. Leggio, M. G., Mandolesi, L., Federico, F., Spirito, F., Ricci, B., Gelfo, F., & Petrosini, L. (2005). Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behavioural Brain Research, 163(1), 78–90.  https://doi.org/10.1016/j.bbr.2005.04.009.CrossRefGoogle Scholar
  34. Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240, 740–749.CrossRefGoogle Scholar
  35. Lumpkin, E. A., & Caterina, M. J. (2007). Mechanisms of sensory transduction in the skin. Nature, 445, 858–865.CrossRefGoogle Scholar
  36. Manto, M., Bower, J. M., Conforto, A. B., Delgado-García, J. M., Guarda, S. N., Gerwig, M., … Timmann, D. (2011). Consensus paper: Roles of the cerebellum in motor control—The diversity of ideas on cerebellar involvement in movement. The Cerebellum, 11(2), 457–487.  https://doi.org/10.1007/s12311-011-0331-9.CrossRefGoogle Scholar
  37. Martin, J. H., Radzyner, H., & Leonard, M. E. (2012). Neuroanatomy: Text and atlas. London: McGraw-Hill.Google Scholar
  38. Massion, J. (1992). Movement, posture and equilibrium: Interaction and coordination. Progress in Neurobiology, 38(1), 35–56.  https://doi.org/10.1016/0301-0082(92)90034-c.CrossRefGoogle Scholar
  39. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia output and cognition: Evidence from anatomical, behavioral, and clinical studies. Brain and Cognition, 42(2), 183–200.  https://doi.org/10.1006/brcg.1999.1099.CrossRefGoogle Scholar
  40. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202.  https://doi.org/10.1146/annurev.neuro.24.1.167.CrossRefGoogle Scholar
  41. Mufson, E. J., Ginsberg, S. D., Ikonomovic, M. D., & Dekosky, S. T. (2003). Human cholinergic basal forebrain: Chemoanatomy and neurologic dysfunction. Journal of Chemical Neuroanatomy, 26(4), 233–242.  https://doi.org/10.1016/s0891-0618(03)00068-1.CrossRefGoogle Scholar
  42. Muir, J. L., Page, K. J., Sirinathsinghji, D., Robbins, T. W., & Everitt, B. J. (1993). Excitotoxic lesions of basal forebrain cholinergic neurons: Effects on learning, memory and attention. Behavioural Brain Research, 57(2), 123–131.  https://doi.org/10.1016/0166-4328(93)90128-d.CrossRefGoogle Scholar
  43. Nelson, A. B., & Kreitzer, A. C. (2014). Reassessing models of basal ganglia function and dysfunction. Annual Review of Neuroscience, 37(1), 117–135.  https://doi.org/10.1146/annurev-neuro-071013-013916.CrossRefGoogle Scholar
  44. Ochsner, K. N., Ray, R. D., Cooper, J. C., Robertson, E. R., Chopra, S., Gabrieli, J. D., & Gross, J. J. (2004). For better or for worse: Neural systems supporting the cognitive down- and up-regulation of negative emotion. NeuroImage, 23(2), 483–499.  https://doi.org/10.1016/j.neuroimage.2004.06.030.CrossRefGoogle Scholar
  45. Öngur, D., & Price, J. L. (2000). The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cerebral Cortex, 10(3), 206–219.  https://doi.org/10.1093/cercor/10.3.206.CrossRefGoogle Scholar
  46. Packard, M. G., Cahill, L., & Mcgaugh, J. L. (1994). Amygdala modulation of hippocampal-dependent and caudate nucleus-dependent memory processes. Proceedings of the National Academy of Sciences, 91(18), 8477–8481.  https://doi.org/10.1073/pnas.91.18.8477.CrossRefGoogle Scholar
  47. Paulmann, S., Pell, M. D., & Kotz, S. A. (2008). Functional contributions of the basal ganglia to emotional prosody: Evidence from ERPs. Brain Research, 1217, 171–178.  https://doi.org/10.1016/j.brainres.2008.04.032.CrossRefGoogle Scholar
  48. Pauls, D., Towbin, K., Leckman, J., Zahner, G., & Cohen, D. (1986). Gilles de la Tourette’s syndrome and obsessive-compulsive disorder: Evidence supporting a genetic relationship. Archives of General Psychiatry, 43, 1180–1182.CrossRefGoogle Scholar
  49. Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9(2), 60–68.  https://doi.org/10.1016/j.tics.2004.12.008.CrossRefGoogle Scholar
  50. Picard, N., & Strick, L. P. (2003). Activation of the supplementary motor area (SMA) during performance of visually guided movements. Cerebral Cortex, 13(9), 977–986.  https://doi.org/10.1093/cercor/13.9.977.CrossRefGoogle Scholar
  51. Pinto, Y., Haan, E. H., & Lamme, V. A. (2017a). The split-brain phenomenon revisited: A single conscious agent with split perception. Trends in Cognitive Sciences, 21(11), 835–851.  https://doi.org/10.1016/j.tics.2017.09.003.CrossRefGoogle Scholar
  52. Pinto, Y., Neville, D. A., Otten, M., Corballis, P. M., Lamme, V. A., Haan, E. H., … Fabri, M. (2017b). Split brain: Divided perception but undivided consciousness. Brain.  https://doi.org/10.1093/brain/aww358.
  53. Pontieri, F. E., Tanda, G., Orzi, F., & Chiara, G. D. (1996). Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature, 382(6588), 255–257.  https://doi.org/10.1038/382255a0.CrossRefGoogle Scholar
  54. Ramnani, N. (2006). The primate cortico-cerebellar system: Anatomy and function. Nature Reviews Neuroscience, 7(7), 511–522.  https://doi.org/10.1038/nrn1953.CrossRefGoogle Scholar
  55. Roberts, A. C., Robbins, T. W., & Weiskrantz, L. (2003). The prefrontal cortex: Executive and cognitive functions. Oxford: Oxford University Press.Google Scholar
  56. Rouach, N., Glowinski, J., & Giaume, C. (2000). Activity-dependent neuronal control of gap-junctional communication in astrocytes. The Journal of Cell Biology, 149(7), 1513–1526.  https://doi.org/10.1083/jcb.149.7.1513.CrossRefGoogle Scholar
  57. Sakata, H., & Taira, M. (1994). Parietal control of hand action. Current Opinion in Neurobiology, 4, 847–856.CrossRefGoogle Scholar
  58. Siegel, G. J. (2011). Basic neurochemistry: Molecular, cellular and medical aspects. Amsterdam: Elsevier Academic Press.Google Scholar
  59. Siri, W. E. (1956). The gross composition of the body. In Advances in biological and medical physics (pp. 239–280). New York: Academic Press.Google Scholar
  60. Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6(3), 309–315.  https://doi.org/10.1038/nn1008.CrossRefGoogle Scholar
  61. Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195–231.  https://doi.org/10.1037//0033-295x.99.2.195.CrossRefGoogle Scholar
  62. Squire, L. R. (2009). The legacy of patient H.M. for neuroscience. Neuron, 61(1), 6–9.  https://doi.org/10.1016/j.neuron.2008.12.023.CrossRefGoogle Scholar
  63. Sunkin, S. M., Ng, L., Lau, C., Dolbeare, T., Gilbert, T. L., Thompson, C. L., … Dang, C. (2012). Allen brain atlas: An integrated spatio-temporal portal for exploring the central nervous system. Nucleic Acids Research, 41(D1).  https://doi.org/10.1093/nar/gks1042.CrossRefGoogle Scholar
  64. Torgerson, C. M., Irimia, A., Goh, S. Y., & Horn, J. D. (2014). The DTI connectivity of the human claustrum. Human Brain Mapping, 36(3), 827–838.  https://doi.org/10.1002/hbm.22667.CrossRefGoogle Scholar
  65. Vigneau, M., Beaucousin, V., Hervé, P., Duffau, H., Crivello, F., Houdé, O., … Tzourio-Mazoyer, N. (2006). Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing. NeuroImage, 30(4), 1414–1432.  https://doi.org/10.1016/j.neuroimage.2005.11.002.CrossRefGoogle Scholar
  66. Wang, Y., Wang, M., Yin, S., Jang, R., Wang, J., Xue, Z., & Xu, T. (2015). NeuroPep: A comprehensive resource of neuropeptides. Database (Oxford).  https://doi.org/10.1093/database/bav038.CrossRefGoogle Scholar
  67. Whittingstall, K., Stroink, G., Gates, L., Connolly, J., & Finley, A. (2003). Effects of dipole position, orientation and noise on the accuracy of EEG source localization. Biomedical Engineering Online, 2, 14.CrossRefGoogle Scholar
  68. Wong, R. O., & Ghosh, A. (2002). Activity-dependent regulation of dendritic growth and patterning. Nature Reviews Neuroscience, 3(10), 803–812.  https://doi.org/10.1038/nrn941.CrossRefGoogle Scholar
  69. Zonta, M., Angulo, M. C., Gobbo, S., Rosengarten, B., Hossmann, K., Pozzan, T., & Carmignoto, G. (2002). Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nature Neuroscience, 6(1), 43–50.  https://doi.org/10.1038/nn980.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.iMotions A/SCopenhagenDenmark

Personalised recommendations