Advertisement

“A Triangle Is Like a Tent”: Children’s Conception of Geometric Shapes

  • Andrea MaierEmail author
  • Christiane Benz
Chapter
  • 26 Downloads

Abstract

Research claims that children start to build geometric concepts even before they enter school. In kindergarten geometric figures occur for example in buildings or pattern blocks, in sorting or combination games. While doing such activities, the formation of geometric concepts may happen incidentally or—as is mostly the case in schools—the names and properties of a shape are informatively taught, in ideal cases discovered and elaborated. In order to investigate the geometric concept formation of 4- to 6-year-old children in two different learning environments, around 80 English and German children were given several tasks concerning the conception of geometric shapes. The tasks were designed in order to investigate as many aspects that are stated to make up a comprehensive concept formation or respectively show that the aims of a concept formation are met. In this chapter, some results are presented with the focus on the children’s explanations as well as the images they have in mind of geometric shapes, especially triangles.

Keywords

Geometric shapes Concept Images Explanation Curriculum comparison 

References

  1. Battista, M. T. (2007). The development of geometric and spatial thinking. In F. K. Lester (Ed.), Second handbook of research of mathematics teaching and learning: a project of the National Council of Teachers of Mathematics (2nd ed., pp. 843–908). Charlotte, NC: Information Age.Google Scholar
  2. Bauersfeld, H. (1983). Subjektive Erfahrungsbereiche als Grundlage einer Interaktionstheorie des Mathematiklernens und -lehrens. In H. Bauersfeld, H. Gussmann, & G. Krummheuer (Eds.), Lernen und Lehren von Mathematik. Untersuchungen zum Mathematikunterricht (Vol. 6, pp. 1–56). Köln, Germany: Aulis Verlag Deubner.Google Scholar
  3. Burger, W. F., & Shaughnessy, J. M. (1986). Characterizing the van Hiele levels of development in geometry. Journal for Research in Mathematics Education, 17(1), 31–48.CrossRefGoogle Scholar
  4. Caspary, R. (Ed.). (2006). Lernen und Gehirn. Der Weg zu einer neuen Pädagogik (7th ed.). Freiburg, Germany: Herder Verlag.Google Scholar
  5. Clarke, B. A. (2004). A shape is not defined by its shape: Developing young children’s geometric understanding. Journal of Australian Research in Early Childhood Education, 11(2), 110–127.Google Scholar
  6. Clements, D. H. (2004). Geometric and spatial thinking in early childhood education. In D. H. Clements & J. Sarama (Eds.), Engaging young children in mathematics (pp. 267–297). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  7. Clements, D. H., & Sarama, J. (2007). Effects of preschool mathematics curriculum: Summative research on the building blocks project. Journal for Research in Mathematics Education, 38(2), 136–163.CrossRefGoogle Scholar
  8. Clements, D. H., Swaminathan, S., Hannibal, M. A. Z., & Sarama, J. (1999). Young children’s concepts of shape. Journal for Research on Mathematics Education, 30(2), 192–212.CrossRefGoogle Scholar
  9. Franke, M., & Reinhold, S. (2016). Didaktik der Geometrie in der Grundschule (3rd ed.). Berlin, Germany: Springer Spektrum Verlag.Google Scholar
  10. Freudenthal, H. (1983). Didactical phenomenology of mathematical structure. Mathematics education library. Dordrecht, The Netherlands: D. Reidel.Google Scholar
  11. Gasteiger, H. (2015). Early mathematics in play situations: Continuity of learning. In B. Perry, A. Gervasoni, & A. MacDonald (Eds.), Mathematics and transition to school. International perspectives (pp. 255–272). Singapore: Springer.CrossRefGoogle Scholar
  12. Hüther, G. (2007). Wie lernen Kinder?—Voraussetzungen für gelingende Bildungsprozesse aus neurobiologischer Sicht. In R. Caspary (Ed.), Lernen und Gehirn. Der Weg zu einer neuen Pädagogik (2nd ed., pp. 70–84). Freiburg im Breisgau, Germany: Herder Verlag.Google Scholar
  13. Kläger, M. (1990). Phänomen Kinderzeichnung. Manifestation bildnerischen Gestaltens. Baltmannsweiler, Germany: Pädagogischer Verlag Burgbücherei Schneider GmbH.Google Scholar
  14. Klausmeier, H. J., & Sipple, T. S. (1980). Learning and teaching concepts. A strategy for testing applications of theory. London: Academic Press.Google Scholar
  15. Krajewski, K. (2003). Vorhersage von Rechenschwäche in der Grundschule. Hamburg, Germany: Verlag Dr. Kovac.Google Scholar
  16. Lehrer, R., Jenkins, M., & Osana, H. (1998). Longitudinal study of children’s reasoning about space and geometry. In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  17. Levenson, E., Tirosh, D., & Tsamir, P. (2011). Preschool geometry. Theory, research and practical perspectives. Rotterdam, The Netherlands: Sense.CrossRefGoogle Scholar
  18. Oswald, H. (2010). Was heißt qualitativ forschen? In B. Friebertshäuser, A. Langer, & A. Prengel (Eds.), Handbuch Qualitative Forschungsmethoden in der Erziehungswissenschaft (pp. 183–201). Weinheim, Germany: Juventa.Google Scholar
  19. Piaget, J., Inhelder, B., et al. (1975). Die Entwicklung des räumlichen Denkens beim Kinde. Stuttgart, Germany: Ernst Klett Verlag.Google Scholar
  20. Razel, M., & Eylon, B.-S. (1990). Developing of visual cognition: Transfer effects of the Agam Program. Journal of Applied Developmental Psychology, 11, 459–485.CrossRefGoogle Scholar
  21. Reed, S. K. (1972). Pattern recognition and categorization. Cognitive Psychology, 3, 382–407.CrossRefGoogle Scholar
  22. Sarama, J., & Clements, D. H. (2009). Early childhood mathematics education research—learning trajectories for young children. New York: Routledge.CrossRefGoogle Scholar
  23. Senk, S. L. (1989). Van Hiele levels and achievement in writing geometry proofs. Journal for Research in Mathematics Education, 20(3), 309–321.CrossRefGoogle Scholar
  24. Siegler, R. S. (1996). Emerging minds. The process of change in children’s thinking. Oxford, NY: Oxford University Press.Google Scholar
  25. Smith, E., & Medin, D. (1981). Categories and concepts. Cambridge, MA: Harvard University.CrossRefGoogle Scholar
  26. Szagun, G. (2008). Sprachentwicklung beim Kind. Ein Lehrbuch (2nd ed.). Weinheim, Germany: Beltz Verlag.Google Scholar
  27. Tsamir, P., Tirosh, D., & Levenson, E. (2008). Intuitive nonexamples: the case of triangles. Retrieved April 8, 2013, from http://link.springer.com/article/10.1007%2Fs10649-008-9133-5#page-1
  28. Unterhauser, E., & Gasteiger, H. (2018). Verständnis des geometrischen Begriffs Viereck bei Kindern zwischen vier und sechs Jahren. In Frühe Bildung 7(3) (pp. 152–158). Göttingen, German: Hogrefe Verlag.Google Scholar
  29. Van Hiele, P. M. (1985). The child’s thought and geometry. In D. Fuys, D. Geddes, & R. Tischler (Eds.), English translation of selected writings of Dina van Hiele-Geldof and Pierre M. van Hiele (pp. 243–252). New York: Brooklyn College, School of Education.Google Scholar
  30. Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In D. Tall (Ed.), Advanced mathematical thinking (pp. 65–81). Dordrecht, The Netherlands: Kluwer.Google Scholar
  31. Vollrath, H.-J. (1984). Methodik des Begriffslehrens im Mathematikunterricht (1st ed.). Stuttgart, Germany: Klett Verlag.Google Scholar
  32. Wilson, P. S. (1990). Inconsistent ideas related to definitions and examples. Focus on Learning Problems in Mathematics, 12, 31–47.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Education KarlsruheKarlsruheGermany

Personalised recommendations