Advertisement

Foreword to Chapter Two

  • Daniel SimberloffEmail author
  • Anthony Ricciardi
Chapter
  • 34 Downloads

Abstract

The roots of this chapter, and indeed this book, lay in lecture notes for an advanced zoology class on “Ecology and Geographical Distribution” (later called “Faunal History”) that Elton taught at Oxford starting about 1928.

References

  1. I.
    Anon. 1962. Cattle egrets seen in Britain. The Guardian (April 30).Google Scholar
  2. II.
    Boivin, N., and D.Q. Fuller. 2009. Shell middens, ships and seeds: Exploring coastal subsistence, maritime trade and the dispersal of domesticates in and around the ancient Arabian Peninsula. Journal of World Prehistory 22: 113–180.CrossRefGoogle Scholar
  3. III.
    Carlton, J.T. 2009. Deep invasion ecology and the assembly of communities in historical time. Pp. 13–56 in: G. Rilov and J.A. Crooks (eds.), Biological Invasions in Marine Ecosystems. Spinger-Verlag, Berlin.CrossRefGoogle Scholar
  4. IV.
    Cox, J.G., and S.L. Lima. 2006. Naïveté and an aquatic-terrestrial dichotomy in the effects of introduced predators. Trends in Ecology and Evolution 21: 674–680.CrossRefGoogle Scholar
  5. V.
    Davis, D.E. 1960. The spread of the cattle egret in the United States. Auk 77: 421–424.CrossRefGoogle Scholar
  6. VI.
    Diamond, J., and T. Case. 1986. Overview: introductions, extinctions, exterminations, and invasions. Pp. 65–79 in: J. Diamond and T.J. Case (eds.), Community Ecology. Harper and Row, New York.Google Scholar
  7. VII.
    de Queiroz, A. 2014. The Monkey’s Voyage. Basic Books, New York.Google Scholar
  8. VIII.
    Elton, C.S. 1943. The changing realms of animal life. Polish Science and Learning 2: 1–4.Google Scholar
  9. IX.
    Elton, C.S. 1975. Life and Scientific Work: Teaching (unpublished autobiographical material), MS. Eng. c3327 A49-A52, Elton Archives, Weston Library, Oxford University.Google Scholar
  10. X.
    Faurby, S., and J.C. Svenning. 2016. The asymmetry in the Great American Biotic Interchange in mammals is consistent with differential susceptibility to mammalian predation. Global Ecology and Biogeography 25: 1443–1453.CrossRefGoogle Scholar
  11. XI.
    Frenot, Y., S.L. Chown, J. Whinam, P.M. Selkirk, P. Convey, M. Skotnicki, and D.M. Bergstrom. 2005. Biological invasions in the Antarctic: extent, impacts and implications. Biological Reviews of the Cambridge Philosophical Society 80: 45–72.CrossRefGoogle Scholar
  12. XII.
    Hebert, P.D.N., and M.E.A. Cristescu. 2002. Genetic perspectives on invasions: the case of the Cladocera. Canadian Journal of Fisheries and Aquatic Sciences 59: 1229–1234.CrossRefGoogle Scholar
  13. XIII.
    Hofman, C., and T.C. Rick. 2018. Ancient biological invasions and island ecosystems: tracking translocations of wild plants and animals. Journal of Archaeological Research 26: 65–115.CrossRefGoogle Scholar
  14. XIV.
    Leppakoski, E., and S. Olenin. 2000. Non-native species and rates of spread: lessons from the brackish Baltic Sea. Biological Invasions 2: 151–163.CrossRefGoogle Scholar
  15. XV.
    Lessa, E.P., B. Van Valkenburgh, and R.A. Fariña. 1997. Testing hypotheses of differential mammalian extinctions subsequent to the Great American biotic interchange. Palaeogeography, Palaeoclimatology, Palaeoecology 135: 157–162.CrossRefGoogle Scholar
  16. XVI.
    Long, J.L. 2003. Introduced Mammals of the World. CSIRO Publishers, Collingwood, Australia.Google Scholar
  17. XVII.
    Mack, R.N., and W.M. Lonsdale. 2001. Humans as global plant dispersers: getting more than we bargained for. BioScience 51: 95–102.CrossRefGoogle Scholar
  18. XVIII.
    Owen, H.G. 1976. Continental displacement and expansion of the earth during the Mesozoic and Cenozoic. Philosophical Transactions of the Royal Society A 281: 223–291.Google Scholar
  19. XIX.
    Reyment, R.A., and E.A. Tait. 1972. Biostratigraphical dating of the early history of the South Atlantic Ocean. Philosophical Transactions of the Royal Society A 264: 55–95.Google Scholar
  20. XX.
    Ricciardi, A. 2007. Are modern biological invasions an unprecedented form of global change? Conservation Biology 21: 329–336.CrossRefGoogle Scholar
  21. XXI.
    Ricciardi, A., and S.K. Atkinson. 2004. Distinctiveness magnifies impact of biological invaders in aquatic ecosystems. Ecology Letters 7: 781–784.CrossRefGoogle Scholar
  22. XXII.
    Seebens, H., et al. 2017. No saturation in the accumulation of alien species worldwide. Nature Communications 8: 14435.Google Scholar
  23. XXIII.
    Stokstad, E. 2007. Feared quagga mussel turns up in western United States. Science 315: 453.CrossRefGoogle Scholar
  24. XXIV.
    van Kleunen, M., et al. 2015. Global exchange and accumulation of non-native plants. Nature 525: 100–103.CrossRefGoogle Scholar
  25. XXV.
    Vellinga, E.C., B.E. Wolfe, and A. Pringle. 2009. Global patterns of ectomycorrhizal introductions. New Phytologist 181: 960–973.CrossRefGoogle Scholar
  26. XXVI.
    Vermeij, G.J. 1991. When biotas meet: Understanding biotic interchange. Science 253: 1099–1104.CrossRefGoogle Scholar
  27. XXVII.
    Webb, S.D. 1991. Ecogeography and the Great American Interchange. Paleobiology 17(3): 266–280.CrossRefGoogle Scholar
  28. XXVIII.
    Zhu, Y.-G., M. Gillings, P. Simonet, D. Stekel, S. Banwart, and J. Penuelas. 2017. Microbial mass movements. Science 357: 1099–1100.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of TennesseeKnoxvilleUSA
  2. 2.Redpath Museum and McGill School of EnvironmentMcGill UniversityMontrealCanada

Personalised recommendations