Advertisement

Production and Application of Doubled Haploid in Brassica Improvement

  • Anshul Watts
  • Subramanian Sankaranarayanan
  • Ritesh Kumar Raipuria
  • Archana Watts
Chapter
  • 41 Downloads

Abstract

Brassica is one of the most important genera in the Brassicaceae family that encompasses both oilseed and vegetable crops. Haploid and doubled haploid technology are one of the easiest ways through which plant breeding can be accelerated. In almost all the Brassica species, haploids and doubled haploids routinely generated through tissue culture–mediated approaches. Both anther and microspore culture are tissue culture dependent, and the success of these methods is dependent on several factors, such as genotype and growth condition of the plant, stage of the microspore, medium composition, stress, and others. Apart from these tissue culture methods, in the recent past, haploid inducer lines were developed through which haploids can be produced by simple crossing. These doubled haploids have several applications in Brassica breeding, such as mutagenesis, transformation, developing improved varieties, genomics, and in basic studies. Several genes and QTLs have been identified related to anther and microspore culture in Brassica spp. Apart from these advantages and applications, there are various challenges in doubled haploid technology which need to be addressed.

Keywords

Brassica CENH3 Doubled haploid Haploid Mutagenesis Transformation 

References

  1. Ajisaka H, Kuginuki Y, Shiratori M, Ishiguro K, Enomoto S, Hirai M (1999) Mapping of loci affecting the culturing efficiency of microspore culture of Brassica rapa L. syn. Campestris L. using DNA polymorphism. Breed Sci 49:187–192CrossRefGoogle Scholar
  2. Ali MM, Mian MAK, Custers JBM, Khuram MMH (2008) Microspore culture and the performance of microspore derived doubled haploid in Brassica juncea (L.). Bangladesh J Agric Res 33(3):571–578Google Scholar
  3. Babbar SB, Agarwal PK, Sahay S, Bhojwani SS (2004) Isolated microspore culture of Brassica: an experimental tool for developmental studies and crop improvement. Indian J Plant Biotechnol 3:185–202Google Scholar
  4. Baillie AMR, Epp DJ, Hutcheson D, Keller WA (1992) In vitro culture of isolated microspores and regeneration of plants in Brassica campestris. Plant Cell Rep 11:234–237PubMedGoogle Scholar
  5. Barro F, Martin A (1999) Response of different genotypes of Brassica carinata to microspore culture. Plant Breed 118:79–81CrossRefGoogle Scholar
  6. Bettey M, Finch-Savage WE, King GJ, Lynn JR (2000) Quantitative genetic analysis of seed vigour and pre-emergence seedling growth traits in Brassica oleracea. New Phytol 148:277–286.  https://doi.org/10.1046/j.1469-8137.2000.00760.xCrossRefGoogle Scholar
  7. Bhojwani SS, Razdan MK (1996) Plant tissue culture: theory and practice, vol 7. Elsevier, Amsterdam, pp 177–201Google Scholar
  8. Blakeslee AF, Belling J, Farnham ME, Bergner AD (1922) A haploid mutant in the Jimson weed, Datura stramonium. Science 55:646–647CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L, Hattori J, Liu CM, van Lammeren AA, Miki BL, Custers JB, Campagne MM (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749.  https://doi.org/10.1105/tpc.001941CrossRefPubMedPubMedCentralGoogle Scholar
  10. Burbulis N, Malinauskaite R, Kott L (2001) Oil quality improvement through in vitro mutagenesis and haploid selection in Lithuanian winter Brassica napus germplasm. Proc Latv Acad Sci 55:197–200Google Scholar
  11. Burnett L (1992) Embryogenesis and plant regeneration from isolated microspores of Brassica rapa L. ssp oleifera. Plant Cell Rep 11:215–218CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cegielska-Taras T, Pniewski T, Szala L (2008) Transformation of microspore-derived embryos of winter oilseed rape (Brassica napus L.) by using Agrobacterium tumefaciens. J Appl Genet 49:343–347CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cerosimo A, Sorrentino C (1996) Haploidy in Nicotiana spp. In: Mohan JS, Sopory SK, Ricahrd V (eds) In vitro haploid production in higher plants, vol 5. Kluwcr Academic, Dordrecht, pp 135–163Google Scholar
  14. Chen ZZ, Snyder S, Fan ZG, Loh WH (1994) Efficient production of doubled haploid plants through chromosome doubling of isolated microspores in Brassica napus. Plant Breed 113:217–221.  https://doi.org/10.1111/j.1439-0523.1994.tb00725.xCrossRefGoogle Scholar
  15. Chuong PV, Beversdorf WD (1985) High frequency embryogenesis through isolated microspore culture in Brassica napus L. and B. carinata Braun. Plant Sci 39:219–226CrossRefGoogle Scholar
  16. Chuong PV, Deslauriers C, Kott LS, Beversdorf WD (1988) Effects of donor genotype and bud sampling on microspore culture of Brassica napus. Can J Bot 6:1653–1657CrossRefGoogle Scholar
  17. Clausen RE, Mann MC (1924) Inheritance in Nicotiana tabacum: V. The occurrence of haploid plants in interspecific progenies. Proc Natl Acad Sci U S A 10:121–124CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cloutier S, Cappadocia M, Landry BS (1995) Study of microspore-culture responsiveness in oilseed rape (Brassica napus L.) by comparative mapping of a F2 population and two microspore-derived populations. Theor Appl Genet 91:841–847CrossRefPubMedPubMedCentralGoogle Scholar
  19. Coe EH (1959) A line of maize with high haploid frequency. Am Nat 93:381–382.  https://doi.org/10.1086/282098CrossRefGoogle Scholar
  20. Dhaka N, Mukhopadhyay A, Paritosh K (2017a) Identification of genic SSRs and construction of a SSR-based linkage map in Brassica juncea. Euphytica 213(15).  https://doi.org/10.1007/s10681-016-1814-z
  21. Dhaka N, Rout K, Yadava SK, Sodhi YS, Gupta V, Pental D, Pradhan AK (2017b) Genetic dissection of seed weight by QTL analysis and detection of allelic variation in Indian and east European gene pool lines of Brassica juncea. Theor Appl Genet.  https://doi.org/10.1007/s00122-016-2811-2
  22. Dirks R, van Dun K, de Snoo CB, van den Berg M, Lelivelt CL, Voermans W, Woudenberg L, de Wit JPC, Reinink K, Schut JW, vab der Zeeuw E, Vogelaar A, Freymark G, Gutteling EWKMN, van Drongelen P, Kieny M, Ellul P, Touraev A, Ma H, De Jong H, Wijnker E (2009) Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnol J 7:837–845CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dunwell JM (2010) Haploid in flowering plants: origin and exploitation. Plant Biotechnol J 8:377–424.  https://doi.org/10.1111/j.1467-7652.2009.00498.xCrossRefPubMedPubMedCentralGoogle Scholar
  24. Elahi N, Duncan RW, Stasolla C (2016) Effects of altered expression of LEAFY COTYLEDON1 and FUSCA3 on microspore-derived embryogenesis of Brassica napus L. J Genet Eng Biotechnol 14:19–30CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ferrie AMR, Möllers C (2011) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tiss Org Cult 104:375–386CrossRefGoogle Scholar
  26. Ferrie AMR, Taylor DC, Mackenzie SL, Keller WA (1999) Microspore embryogenesis of high sn-2 erucic acid Brassica oleracea germplasm. Plant Cell Tiss Org Cult 57:79–84CrossRefGoogle Scholar
  27. Ferrie AMR, Taylor DC, MacKenzie SL, Rakow G, Raney JP, Keller WA (2008) Microspore mutagenesis of Brassica species for fatty acid modifications: a preliminary evaluation. Plant Breed 127:501–506CrossRefGoogle Scholar
  28. Fu S, Yin L, Xu M, Li Y, Wang M, Yang J, Tingdong F, Wang J, Shen J, Ali A, Zou Q, Yi B, Wen J, Tao L, Kang Z, Tang R (2018) Maternal doubled haploid production in interploidy hybridization between Brassica napus and Brassica allooctaploids. Planta 247(1):113–125CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fukuoka H, Ogawa T, Matsuoka M, Ohkawa Y, Yano H (1998) Direct gene delivery into isolated microspores of rapeseed (Brassica napus L.) and the production of fertile transgenic plants. Plant Cell Rep 17:323–328CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gil-Humanes J, Barro F (2009) Production of doubled haploids in Brassica. In: Touraev et al (eds) Advances in haploid production in higher pants. Springer, New York, pp 65–73CrossRefGoogle Scholar
  31. Gilles LM, Khaled A, Laffaire JP, Chaignon S, Gendort G, Laplaige J, Berges H, Beydon G, Bayle V, Barret P, Comadran J, Martinant J-P, Rogowsky PM, Widiez T (2017) Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO J 36:707–717.  https://doi.org/10.15252/embj.201796603CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gland A, Lichter R, Schweiger HG (1988) Genetic and exogenous factors affecting embryogenesis in isolated microspore cultures of Brassica napus L. J Plant Physiol 132:613–617CrossRefGoogle Scholar
  33. Guerche P, Charbonnier M, Jouanin L, Tourneur C, Paszkowski J, Pelletier G (1987) Direct gene transfer by electroporation in Brassica napus. Plant Sci 52:111–116CrossRefGoogle Scholar
  34. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497CrossRefGoogle Scholar
  35. Guo YD, Pulli S (1996) High-frequency embryogenesis in Brassica campestris microspore culture. Plant Cell Tiss Org Cult 46:219–225CrossRefGoogle Scholar
  36. Haque E, Taniguchi H, Hassan MM, Bhowmik P, Karim MR, Śmiech M, Zhao K, Rahman M, Islam T (2018) Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: recent progress, prospects, and challenges. Front Plant Sci 9:1–12.  https://doi.org/10.3389/fpls.2018.00617CrossRefGoogle Scholar
  37. He Y, Chen SB, Jin ZL, Wan GL, Xu L, Tang GX, Zhou WJ (2007) Effects of mutagenic treatments of isolated microspores and microspore-derived embryos on embryogenesis and plant regeneration in oilseed rape (Brassica napus L.). In: GCIRC proceedings of the 12th international rapeseed congress, GCIRC, Wuhan, China, vol 2, pp 69–72Google Scholar
  38. Ishii T, Karimi-Ashtiyani R, Houben A (2016) Haploidization via chromosome elimination: means and mechanisms. Annu Rev Plant Biol 67:421–438.  https://doi.org/10.1146/annurev-arplant-043014-114714CrossRefPubMedGoogle Scholar
  39. Jagannath A, Sodhi Y, Gupta V, Mukhopadhyay A, Arumugam N, Singh I, Rohatgi S, Burma P, Pradhan A, Pental D (2011) Eliminating expression of erucic acidencoding loci allows the identification of “hidden” QTL contributing to oil quality fractions and oil content in Brassica juncea (Indian mustard). Theor Appl Genet 122:1091–1103Google Scholar
  40. Jones-Villeneuve E, Huang B, Prudhomme I, Bird S, Kemble R, Hattori J, Miki B (1995) Assessment of microinjection for introducing DNA into uninuclear microspores of rapeseed. Plant Cell Tiss Org Cult 40:97–100CrossRefGoogle Scholar
  41. Kameya T, Hinata K (1970) Induction of haploid plants from pollen grains of Brassica. Jpn J Breed 20:82–87CrossRefGoogle Scholar
  42. Karimi-Ashtiyani R, Ishii T, Niessen M, Stein N, Heckmann S, Gurushidze M, Banaei-Moghaddam AM, Fuchs J, Schubert V, Koch K, Weiss O, Demidov D, Schmidt K, Kumlehn J, Houben A (2015) Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc Natl Acad Sci U S A 112(36):11211–11216.  https://doi.org/10.1073/pnas.1504333112CrossRefPubMedPubMedCentralGoogle Scholar
  43. Keller WA, Rajhathy T, Lacapra J (1975) In vitro production of plants from pollen in Brassica campestris. Can J Genet Cytol 17:655–665CrossRefGoogle Scholar
  44. Kelliher T, Starr D, Wang W, McCuiston J, Zhong H, Nuccio ML, Martin B (2016) Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci 7:414.  https://doi.org/10.3389/fpls.2016.00414CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W, Liebler T, Bullock P, Martin B (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542:105–109.  https://doi.org/10.1038/nature20827CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kitashiba H, Taguchi K, Kaneko I, Inaba K, Yokoi S, Takahata Y, Nishio T (2016) Identification of loci associated with embryo yield in microspore culture of Brassica rapa by segregation distortion analysis. Plant Cell Rep 35:2197–2204.  https://doi.org/10.1007/s00299-016-2029-4CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kott LS, Beversdorf WD (1990) Enhanced plant regeneration from microspore-derived embryos of Brassica napus by chilling, partial desiccation and age selection. Plant Cell Tiss Org Cult 23:187–192Google Scholar
  48. Kott LS, Polsoni L, Berversdorf WD (1988) Cytological aspects of isolated microspore culture of Brassica napus. Can J Bot 66:1658–1664CrossRefGoogle Scholar
  49. Kuppu S, Tan EH, Nguyen H, Rodgers A, Comai L, Chan SWL (2015) Point mutations in centromeric histone induce postzygotic incompatibility and uniparental inheritance. PLoS Genet 11(9):e1005494.  https://doi.org/10.1371/journal.pgen.1005494CrossRefPubMedPubMedCentralGoogle Scholar
  50. Li ZY, Ge XH (2007) Unique chromosome behavior and genetic control in Brassica x Orychophragmus wide hybrids: a review. Plant Cell Rep 26:701–710CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lichter R (1982) Induction of haploid plants from isolated pollen of Brassica napus. Z Pflanzenphysiol 105:427–434CrossRefGoogle Scholar
  52. Liu S, Wang H, Zhang J, Fitt BDL, Xu Z, Evans N, Liu Y, Yang W, Guo X (2005) In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum. Plant Cell Rep 24:133–144CrossRefPubMedPubMedCentralGoogle Scholar
  53. Liu C, Li X, Meng D, Zhong Y, Chen C, Dong X, Xu X, Chen B, Li W, Li L, Tian X, Zhao H, Song W, Luo H, Zhang Q, Lai J, Jin W, Yan J, Chen S (2017) A 4bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Mol Plant 10(3):520–522.  https://doi.org/10.1016/j.molp.2017.01.011CrossRefPubMedPubMedCentralGoogle Scholar
  54. Maheshwari S, Tan EH, West A, Franklin FCH, Comai L, Chan SWL (2015) Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genet 11(1):e1004970CrossRefPubMedPubMedCentralGoogle Scholar
  55. McClinchey SL, Kott LS (2008) Production of mutants with high cold tolerance in spring canola. Euphytica 162:51–67CrossRefGoogle Scholar
  56. Mollers CC (1994) Efficient production of doubled haploid Brassica napus plants by colchicine treatment of microspores. Euphytica 75:95–104CrossRefGoogle Scholar
  57. Murovec J, Bohanec B (2011) Haploids and doubled haploids in plant breeding. In: Abdurakhmonov IY (eds) Plant breeding. InTech.  https://doi.org/10.5772/29982
  58. Niemirowicz-Szczytt K (1997) Excessive homozygosity in doubled haploids-advantages and disadvantages for plant breeding and fundamental research. Acta Physiol Plant 19(2):155–167CrossRefGoogle Scholar
  59. Ohkawa Y, Bevis E, Keller WA (1988) Validity study of microspore culture method in Brassica crops. Cruciferae Newslett 13:75Google Scholar
  60. Padmaja LK, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi YS, Pental D, Pradhan AK (2014) Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea (AABB). Theor Appl Genet 127:339–347Google Scholar
  61. Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using intron polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9:113Google Scholar
  62. Panjabi-Massand P, Yadava SK, Sharma P, Kaur A, Kumar A, Arumugam N, Sodhi YS, Mukhopadhyay A, Gupta V, Pradhan AK, Pental D (2010) Molecular mapping reveals two independent loci conferring resistance to Albugo candida in the east European germplasm of oilseed mustard Brassica juncea. Theor Appl Genet 121:137–145. http://doi.org/10.1007/s00122-010-1297-6Google Scholar
  63. Pechan PM (1989) Successful cocultivation of Brassica napus microspores and proembryos with Agrobacterium. Plant Cell Rep 8:387–390CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pechan PM, Keller WA (1988) Identification of potentially embryogenic microspores in Brassica napus. Physiol Plant 74:377–384CrossRefGoogle Scholar
  65. Pink D, Bailey L, McClement S, Hand P, Mathas E, Buchanan-Wollaston V, Astley D, King G, Teakle G (2008) Double haploids, markers and QTL analysis in vegetable brassicas. Euphytica 164:509–514CrossRefGoogle Scholar
  66. Powell W, Borrino EM, Allison MJ, Griffiths DW, Asher MJC, Dunwell JM (1986) Genetical analysis of microspore derived plants of barley (Hordeum vulgare). Theor Appl Genet 72:619–626CrossRefPubMedPubMedCentralGoogle Scholar
  67. Pradhan AK, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D (2003) A high density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor Appl Genet 106:607–614CrossRefPubMedPubMedCentralGoogle Scholar
  68. Ramchiary N, Padmaja KL, Sharma S, Gupta V, Sodhi YS, Mukhopadhyay A, Arumugam N, Pental D, Pradhan AK (2007a) Mapping of yield influencing QTL in Brassica juncea: implications for breeding of major oilseed crop of dry land areas. Theor Appl Genet 115:807–817CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ramchiary N, Bisht NC, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2007b) QTL analysis reveals context-dependent loci for seed glucosinolate trait in the oilseed Brassica juncea: importance of recurrent selection backcross scheme for the identification of ‘true’ QTL. Theor Appl Genet 116:77–85CrossRefPubMedPubMedCentralGoogle Scholar
  70. Ravi M, Chan SWL (2010) Haploid plants produced by centromere mediated genome elimination. Nature 464:615–619.  https://doi.org/10.1038/nature08842CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rout K, Yadav BG, Yadava SK, Mukhopadhyay A, Gupta V, Pental D, Pradhan AK (2018) QTL landscape for oil content in Brassica juncea: analysis in multiple bi-parental populations in high and “0” erucic background. Front Plant Sci 9:1448.  https://doi.org/10.3389/fpls.2018.01448CrossRefPubMedPubMedCentralGoogle Scholar
  72. Rudolf K, Bohanec B, Hansen N (1999) Microspore culture of white cabbage, Brassica oleracea var. capitata L.: genetic improvement of non-responsive cultivars and effect of genome doubling agents. Plant Breed 118:237–241CrossRefGoogle Scholar
  73. Sankaranarayanan S, Higashiyama T (2018) Capacitation in plant and animal fertilization. Trends Plant Sci 23:129–139CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sebastian RL, Howell EC, King GJ, Marshall DF, Kearsey MJ (2000) An integrated AFLP and RFLP Brassica oleracea linkage map from two morphologically distinct doubled haploid mapping populations. Theor Appl Genet 100:75–81.  https://doi.org/10.1007/s001220050011CrossRefGoogle Scholar
  75. Siebel J, Pauls KP (1989) A comparison of anther and microspore culture as a breeding tool in Brassica napus. Theor Appl Genet 78:473–479CrossRefGoogle Scholar
  76. da Silva Dias JC (1999) Effect of activated charcoal on Brassica oleracea microspore culture embryogenesis. Euphytica 108:65–69CrossRefGoogle Scholar
  77. Takahata Y, Keller WA (1991) High frequency embryogenesis and plant regeneration in isolated microspore culture of Brassica oleracea L. Plant Sci 74:235–242CrossRefGoogle Scholar
  78. Thomas E, Wenzel G (1975) Embryogenesis from microspores of Brassica napus. Z Pflanzenzuecht 74:77–81Google Scholar
  79. Tu Y, Sun J, Ge X, Li Z (2009) Chromosome elimination, addition and introgression in intertribal partial hybrids between Brassica rapa and Isatis indigotica. Ann Bot 103:1039–1048CrossRefPubMedPubMedCentralGoogle Scholar
  80. Uzunova M, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.): construction of an RFLP linkage map and localization of QTLs for seed glucosinolates content. Theor Appl Genet 90:194–204CrossRefGoogle Scholar
  81. Valdés A, Clemens R, Möllers C (2018) Mapping of quantitative trait loci for microspore embryogenesis-related traits in the oilseed rape doubled haploid population DH4069 × Express 617. Mol Breed 38:65.  https://doi.org/10.1007/s11032-018-0822-1CrossRefGoogle Scholar
  82. Voorrips RE, Jongerius MC, Kanne HJ (1997) Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor Appl Genet 94:75–82.  https://doi.org/10.1007/s001220050384CrossRefPubMedGoogle Scholar
  83. Wang XW, Wang HZ, Wang J, Sun RF, Wu J, Liu SL, Bai YQ, Mun JH, Bancroft I, Cheng F, Huang SW, Li XX et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1040CrossRefPubMedPubMedCentralGoogle Scholar
  84. Watts A, Kumar V, Bhat SR (2016) Centromeric histone H3 protein: from basic study to plant breeding applications. J Plant Biochem Biotechnol 25:339–348CrossRefGoogle Scholar
  85. Yadava SK, Arumugam N, Mukhopadhyay A, Sodhi YS, Gupta V, Pental D, Pradhan AK (2012) QTL mapping of yield-associated traits in Brassica juncea: meta-analysis and epistatic interactions using two different crosses between east European and Indian gene pool lines. Theor Appl Genet 125(7):1553–1564CrossRefPubMedPubMedCentralGoogle Scholar
  86. Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z et al (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homeolog gene expression influencing selection. Nat Genet 48(10):1225–1232Google Scholar
  87. Yao L, Zhang Y, Liu C, Liu Y, Wang Y, Liang D, Liu J, Sahoo G, Kelliher T (2018) OsMATL mutation induces haploid seed formation in Indica rice. Nat Plants 4(8):530–533CrossRefPubMedPubMedCentralGoogle Scholar
  88. Zhang FL, Takahata Y (2001) Inheritance of microspore embryogenic ability in Brassica crops. Theor Appl Genet 103:254–258CrossRefGoogle Scholar
  89. Zhang F, Aoki S, Takahata Y (2003) RAPD markers linked to microspore embryogenic ability in Brassica crops. Euphytica 131:207–213CrossRefGoogle Scholar
  90. Zhou WWJ, Tang GGX, Hagberg PP (2002) Efficient production of doubled haploid plants by immediate colchicine treatment of isolated microspores in winter Brassica napus. Plant Growth Regul 37:185–192CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anshul Watts
    • 1
  • Subramanian Sankaranarayanan
    • 2
    • 3
  • Ritesh Kumar Raipuria
    • 1
  • Archana Watts
    • 4
  1. 1.ICAR-National Institute of Plant Biotechnology, Pusa CampusNew DelhiIndia
  2. 2.Department of Botany and Plant PathologyPurdue UniversityWest LafayetteUSA
  3. 3.Division of Plant PhysiologyICAR-Indian Agricultural Research Institute, Pusa CampusWest LafayetteUSA
  4. 4.Division of Plant PhysiologyICAR-Indian Agricultural Research Institute, Pusa CampusNew DelhiIndia

Personalised recommendations