Advertisement

Age-Dependent Branching Processes with Non-homogeneous Poisson Immigration as Models of Cell Kinetics

  • Ollivier HyrienEmail author
  • Nikolay M. Yanev
Chapter
  • 44 Downloads

Abstract

This article considers age-dependent branching processes with non-homogeneous Poisson immigration as models of cell proliferation kinetics. Asymptotic approximations for the expectation and variance–covariance functions of the process are developed. Estimators relying on the proposed asymptotic approximations are constructed, and their performance investigated using simulations.

Keywords

Bellman–Harris branching process Renewal equation Quasi-likelihood Pseudo-likelihood Flow cytometry Leukemia Stem cells Oligodendrocytes 

Notes

Acknowledgements

The paper is supported by NIH R01 grant AI129518 (Hyrien) and grant KP-6-H22/3 from the NSF of the Ministry of Education and Science of Bulgaria.

This research is supported by NIH grants AI129518, NS039511, CA134839, and AI069351 (Hyrien) and grant KP6-H22/3 from the NSF of the Ministry of Education and Science of Bulgaria. The authors are grateful to their colleagues Drs. Mark Noble, Margot Mayer-Pröschel, and Craig Jordan for valuable discussions about the biological examples that motivated this work.

References

  1. 1.
    Athreya, K. B., & Ney, P. E. (1972). Branching processes. New York: Springer.CrossRefzbMATHGoogle Scholar
  2. 2.
    Boucher, K., Zorin, A. V., Yakovlev, A. Y., Mayer-Proschel, M., & Noble, M. (2001). An alternative stochastic model of generation of oligodendrocytes in cell culture. Journal of Mathematical Biology, 43, 22–36.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, R., & Hyrien, O. (2011). Quasi-and pseudo-maximum likelihood estimators for discretely observed continuous-time Markov branching processes. Journal of Statistical Planning and Inference, 141, 2209–2227.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, R., Hyrien, O., Noble, M., & Mayer-Pröschel, M. (2010). A composite likelihood approach to the analysis of longitudinal clonal data on multitype cellular systems under an age-dependent branching process. Biostatistics, 12, 173–191.CrossRefGoogle Scholar
  5. 5.
    Feller, W. (1971). An introduction to probability theory and its applications (Vol. 2). New York: Wiley.zbMATHGoogle Scholar
  6. 6.
    Guttorp, P. (1991). Statistical inference for branching processes. New York: Wiley.zbMATHGoogle Scholar
  7. 7.
    Haccou, P., Jagers, P., & Vatutin, V. A. (2005). Branching processes: Variation, growth and extinction of populations. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  8. 8.
    Harris, T. E. (1963). The theory of branching processes. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  9. 9.
    Heyde, C. C. (1997). Quasi-likelihood and its applications: A general approach to optimal parameter estimation. New York: Springer.CrossRefzbMATHGoogle Scholar
  10. 10.
    Hoel, D., & Crump, K. (1974). Estimating the generation-time of an age-dependent branching process. Biometrics, 30, 125–235.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hyrien, O. (2007). A pseudo-maximum likelihood estimator for discretely observed multitype Bellman–Harris branching processes. Journal of Statistical Planning and Inference, 137, 1375–1388.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hyrien, O., Ambescovich, I., Mayer-Pröschel, M., Noble, M., & Yakovlev, A. Y. (2006). Stochastic modeling of oligodendrocyte generation in cell culture: model validation with time-lapse data. Theoretical Biology & Medical Modelling, 3, 21.CrossRefGoogle Scholar
  13. 13.
    Hyrien, O., Chen, R., Mayer-Pröschel, M., & Noble, M. (2010). Saddlepoint approximations to the moments of multitype age-dependent branching processes, with applications. Biometrics, 66, 567–577.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hyrien, O., Mayer-Pröschel, M., Noble, M., & Yakovlev, A. Y. (2005). A stochastic model to analyze clonal data on multi-type cell populations. Biometrics, 61, 199–207.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hyrien, O., Mayer-Pröschel, M., Noble, M., & Yakovlev, A. Y. (2005). Estimating the life-span of oligodendrocytes from clonal data on their development in cell culture. Mathematical Biosciences, 193, 255–274.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hyrien, O., & Zand, M. S. (2008). A mixture model with dependent observations for the analysis of CFSE-labeling experiments. Journal of the American Statistical Association, 103, 222–239.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jagers, P. (1975). Branching processes with biological applications. London: Wiley.zbMATHGoogle Scholar
  18. 18.
    Karlin, S., & Taylor, H. M. (1981). A second course in stochastic processes. San Diego: Academic Press.zbMATHGoogle Scholar
  19. 19.
    Kimmel, M., & Axelrod, D. E. (2002). Branching processes in biology. New York: Springer.CrossRefzbMATHGoogle Scholar
  20. 20.
    Linz, P. (1985). Analytical and numerical methods for Volterra equations. Philadelphia: SIAM.CrossRefzbMATHGoogle Scholar
  21. 21.
    Nedleman, J., Downs, H., & Pharr, P. (1987). Inference for an age-dependent, multitype branching-process model of mast cells. Journal of Mathematical Biology, 25, 203–226.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Yakovlev, A. Y., Boucher, K., Mayer-Proschel, M., & Noble, M. (1998). Quantitative insight into proliferation and differentiation of oligodendrocyte-type 2 astrocyte progenitor cells in vitro. Proceedings of the National Academy of Sciences of the United States of America, 95, 14164–14167.Google Scholar
  23. 23.
    Yakovlev, A. Y., Stoimenova, V. K., & Yanev, N. M. (2008). Branching processes as models of progenitor cell populations and estimation of the offspring distributions. Journal of the American Statistical Association, 103, 1357–1366.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Yakovlev, A. Y., & Yanev, N. M. (1989). Transient processes in cell proliferation kinetics. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  25. 25.
    Yakovlev, A. Y., & Yanev, N. M. (2006). Branching stochastic processes with immigration in analysis of renewing cell populations. Mathematical Biosciences, 203, 37–63.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Yakovlev, A. Y., & Yanev, N. M. (2007). Age and residual lifetime distributions for branching processes. Statistics & Probability Letters, 77, 503–513.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yanev, N. M. (2008). Statistical inference for branching processes. In M. Ahsanullah & G. P. Yanev (Eds.), Records and branching processes (pp. 143–168). New York: NOVA Science Publishers.Google Scholar
  28. 28.
    Yanev, N. M., Jordan, C. T., Catlin, S., & Yakovlev, A. (2005). Two-type Markov branching processes with immigration as a model of leukemia cell kinetics. Comptes Rendus de l’Académie Bulgare des Sciences, 58, 1025–1032.MathSciNetzbMATHGoogle Scholar
  29. 29.
    Zorin, A. A., Yakovlev, A. Y., Mayer-Proschel, M., & Noble, M. (2000). Estimation problems associated with stochastic modeling of proliferation and differentiation of O-2A progenitor cells in vitro. Mathematical Biosciences, 167 109–121.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Vaccine and Infectious Disease and Public Health Science DivisionsFred Hutchinson Cancer Research CenterSeattleUSA
  2. 2.Department of Probability and Statistics, Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations