Advertisement

Deep Inferior Epigastric Perforator Flap in Breast Reconstruction

  • Warren Mathew Rozen
  • Rafael Acosta
  • Duncan Loi
Chapter
  • 53 Downloads

Abstract

The deep inferior epigastric artery perforator (DIEP) flap was first described by Koshima and Soeda in 1989, able to provide the volume of fat and overlying skin taken in the TRAM flap without the sacrifice of any rectus abdominis muscle. Its low donor site morbidity, combined with its reliability, has popularised the DIEP flap as the most common option for autologous breast reconstruction.

Keywords

Deep inferior epigastric DIEP Autologous breast reconstruction Free flap Tissue transfer 

References

  1. 1.
    Koshima I, Soeda S. Inferior epigastric artery skin flaps without rectus abdominis muscle. Br. J. Plast. Surg. 1989;42(6):645–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Jeong W, Lee S, Kim J. Meta-analysis of flap perfusion and donor site complications for breast reconstruction using pedicled versus free TRAM and DIEP flaps. Breast. 2018;38:45–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Ireton JE, Lakhiani C, Saint-Cyr M. Vascular anatomy of the deep inferior epigastric artery perforator flap: a systematic review. Plast. Reconstr. Surg. 2014;134(5):810e–21e.PubMedCrossRefGoogle Scholar
  4. 4.
    Moon HK, Taylor GI. The vascular anatomy of rectus abdominis musculocutaneous flaps based on the deep superior epigastric system. Plast. Reconstr. Surg. 1988;82(5):815–32.PubMedCrossRefGoogle Scholar
  5. 5.
    Rozen WM, Palmer KP, Suami H, Pan WR, Ashton MW, Corlett RJ, Taylor GI. The DIEA branching pattern and its relationship to perforators: the importance of preoperative computed tomographic angiography for DIEA perforator flaps. Plast Reconstr Surg. 2008;121(2):367–73.PubMedCrossRefGoogle Scholar
  6. 6.
    Holm C, Mayr M, Hofter E, Ninkovic M. Perfusion zones of the DIEP flap revisited: a clinical study. Plast. Reconstr. Surg. 2006;117(1):37–43.PubMedCrossRefGoogle Scholar
  7. 7.
    Blondeel PN, Beyens G, Verhaeghe R, Van Landuyt K, Tonnard P, Monstrey SJ, et al. Doppler flowmetry in the planning of perforator flaps. Br. J. Plast. Surg. 1998;51(3):202–9.PubMedCrossRefGoogle Scholar
  8. 8.
    Rozen WM, Ashton MW, Le Roux CM, Pan WR, Corlett RJ. The perforator angiosome: a new concept in the design of deep inferior epigastric artery perforator flaps for breast reconstruction. Microsurgery. 2010a;30(1):1–7.PubMedGoogle Scholar
  9. 9.
    Wong C, Saint-Cyr M, Mojallal A, Schaub T, Bailey SH, Myers S, et al. Perforasomes of the DIEP flap: vascular anatomy of the lateral versus medial row perforators and clinical implications. Plast. Reconstr. Surg. 2010;125(3):772–82.PubMedCrossRefGoogle Scholar
  10. 10.
    Davis CR, Jones L, Tillett RL, Richards H, Wilson SM. Predicting venous congestion before DIEP breast reconstruction by identifying atypical venous connections on preoperative CTA imaging. Microsurgery. 2019;39(1):24–31.PubMedCrossRefGoogle Scholar
  11. 11.
    Schaverien MV, Ludman CN, Neil-Dwyer J, Perks AG, Raurell A, Rasheed T, et al. Relationship between venous congestion and intraflap venous anatomy in DIEP flaps using contrast-enhanced magnetic resonance angiography. Plast. Reconstr. Surg. 2010;126(2):385–92.PubMedCrossRefGoogle Scholar
  12. 12.
    Rozen WM, Ashton MW. The venous anatomy of the abdominal wall for deep inferior epigastric artery (DIEP) flaps in breast reconstruction. Gland Surg. 2012;1(2):92–110.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Schaverien M, Saint-Cyr M, Arbique G, Brown SA. Arterial and venous anatomies of the deep inferior epigastric perforator and superficial inferior epigastric artery flaps. Plast. Reconstr. Surg. 2008;121(6):1909–19.PubMedCrossRefGoogle Scholar
  14. 14.
    Blondeel PN, Arnstein M, Verstraete K, Depuydt K, Van Landuyt KH, Monstrey SJ, et al. Venous congestion and blood flow in free transverse rectus abdominis myocutaneous and deep inferior epigastric perforator flaps. Plast. Reconstr. Surg. 2000;106(6):1295–9.PubMedCrossRefGoogle Scholar
  15. 15.
    Smit JM, Audolfsson T, Whitaker IS, Werker PM, Acosta R, Liss AG. Measuring the pressure in the superficial inferior epigastric vein to monitor for venous congestion in deep inferior epigastric artery perforator breast reconstructions: a pilot study. J. Reconstr. Microsurg. 2010a;26(2):103–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Doval AF, Lamelas AM, Daly LT, Tobias AM, Lin SJ, Singhal D, et al. Deep inferior epigastric artery perforator flap breast reconstruction in women with previous abdominal incisions: a comparison of complication rates. Ann. Plast. Surg. 2018;81(5):560–4.PubMedCrossRefGoogle Scholar
  17. 17.
    Nykiel M, Hunter C, Lee GK. Algorithmic approach to the design and harvest of abdominal flaps for microvascular breast reconstruction in patients with abdominal scars. Ann. Plast. Surg. 2015;74(Suppl 1):S33–40.PubMedCrossRefGoogle Scholar
  18. 18.
    Roostaeian J, Yoon AP, Sanchez IS, Rahgozar P, Galanis C, Herrera F, et al. The effect of prior abdominal surgery on abdominally based free flaps in breast reconstruction. Plast. Reconstr. Surg. 2014;133(3):247e–55e.PubMedCrossRefGoogle Scholar
  19. 19.
    Rozen WM, Whitaker IS, Ting JW, Ang GG, Acosta R. Deep inferior epigastric artery perforator flap harvest after abdominoplasty with the use of computed tomographic angiography. Plast. Reconstr. Surg. 2012;129(1):198e–200e.PubMedCrossRefGoogle Scholar
  20. 20.
    Broyles JM, Howell LK, Rosson GD. Successful DIEP Flap for breast reconstruction in a patient with prior abdominoplasty. Plast. Reconstr. Surg. 2012;129(5):874e–5e.PubMedCrossRefGoogle Scholar
  21. 21.
    Zeltzer AA, De Baerdemaeker RA, Hendrickx B, Seidenstücker K, Brussaard C, Hamdi M. Deep inferior epigastric artery perforator flap harvest after full abdominoplasty. Acta Chir Belg. 2019;119(5):322–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Jandali S, Nelson JA, Wu LC, Serletti JM. Free transverse rectus abdominis myocutaneous flap for breast reconstruction in patients with prior abdominal contouring procedures. J. Reconstr. Microsurg. 2010;26(9):607–14.PubMedCrossRefGoogle Scholar
  23. 23.
    Ribuffo D, Marcellino M, Barnett GR, Houseman ND, Scuderi N. Breast reconstruction with abdominal flaps after abdominoplasties. Plast. Reconstr. Surg. 2001;108(6):1604–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Sozer SO, Cronin ED, Biggs TM, Gallegos ML. The use of the transverse rectus abdominis musculocutaneous flap after abdominoplasty. Ann. Plast. Surg. 1995;35(4):409–11. discussion 11–2.PubMedCrossRefGoogle Scholar
  25. 25.
    Casey WJ, 3rd, Connolly KA, Nanda A, Rebecca AM, Perdikis G, Smith AA. Indocyanine green laser angiography improves deep inferior epigastric perforator flap outcomes following abdominal suction lipectomy. Plast. Reconstr. Surg. 2015;135(3):491e-497e.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    De Frene B, Van Landuyt K, Hamdi M, Blondeel P, Roche N, Voet D, et al. Free DIEAP and SGAP flap breast reconstruction after abdominal/gluteal liposuction. J. Plast. Reconstr. Aesthet. Surg. 2006;59:1031–6.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Zavlin D, Jubbal KT, Ellsworth WA, Spiegel AJ. Breast reconstruction with DIEP and SIEA flaps in patients with prior abdominal liposuction. Microsurgery. 2018;38(4):413–8.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Lee KT, Mun GH. Effects of obesity on postoperative complications after breast reconstruction using free muscle-sparing transverse rectus abdominis Myocutaneous, deep inferior epigastric perforator, and superficial inferior epigastric artery flap: a systematic review and meta-analysis. Ann. Plast. Surg. 2016;76(5):576–84.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Garvey PB, Villa MT, Rozanski AT, Liu J, Robb GL, Beahm EK. The advantages of free abdominal-based flaps over implants for breast reconstruction in obese patients. Plast. Reconstr. Surg. 2012;130(5):991–1000.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Casey WJ 3rd, Chew RT, Rebecca AM, Smith AA, Collins JM, Pockaj BA. Advantages of preoperative computed tomography in deep inferior epigastric artery perforator flap breast reconstruction. Plast. Reconstr. Surg. 2009;123(4):1148–55.PubMedCrossRefGoogle Scholar
  31. 31.
    Fitzgerald O’Connor E, Rozen WM, Chowdhry M, Band B, Ramakrishnan VV, Griffiths M. Preoperative computed tomography angiography for planning DIEP flap breast reconstruction reduces operative time and overall complications. Gland Surg. 2016;5(2):93–8.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Masia J, Kosutic D, Clavero JA, Larranaga J, Vives L, Pons G. Preoperative computed tomographic angiogram for deep inferior epigastric artery perforator flap breast reconstruction. J. Reconstr. Microsurg. 2010;26(1):21–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Ohkuma R, Mohan R, Baltodano PA, Lacayo MJ, Broyles JM, Schneider EB, et al. Abdominally based free flap planning in breast reconstruction with computed tomographic angiography: systematic review and meta-analysis. Plast. Reconstr. Surg. 2014;133(3):483–94.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Rozen WM, Anavekar NS, Ashton MW, Stella DL, Grinsell D, Bloom RJ, et al. Does the preoperative imaging of perforators with CT angiography improve operative outcomes in breast reconstruction? Microsurgery. 2008b;28(7):516–23.PubMedCrossRefGoogle Scholar
  35. 35.
    Smit JM, Dimopoulou A, Liss AG, Zeebregts CJ, Kildal M, Whitaker IS, et al. Preoperative CT angiography reduces surgery time in perforator flap reconstruction. J. Plast. Reconstr. Aesthet. Surg.: JPRAS. 2009;62(9):1112–7.PubMedCrossRefGoogle Scholar
  36. 36.
    Rozen WM, Garcia-Tutor E, Alonso-Burgos A, Acosta R, Stillaert F, Zubieta JL, et al. Planning and optimising DIEP flaps with virtual surgery: the Navarra experience. J. Plast. Reconstr. Aesthet. Surg.: JPRAS. 2010b;63(2):289–97.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Phillips TJ, Stella DL, Rozen WM, Ashton M, Taylor GI. Abdominal wall CT angiography: a detailed account of a newly established preoperative imaging technique. Radiology. 2008;249(1):32–44.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Masia J, Larranaga J, Clavero JA, Vives L, Pons G, Pons JM. The value of the multidetector row computed tomography for the preoperative planning of deep inferior epigastric artery perforator flap: our experience in 162 cases. Ann. Plast. Surg. 2008;60(1):29–36.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Rozen WM, Phillips TJ, Ashton MW, Stella DL, Gibson RN, Taylor GI. Preoperative imaging for DIEA perforator flaps: a comparative study of computed tomographic angiography and Doppler ultrasound. Plast. Reconstr. Surg. 2008c;121(1):9–16.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Pauchot J, Aubry S, Kastler A, Laurent O, Kastler B, Tropet Y. Preoperative imaging for deep inferior epigastric perforator flaps: a comparative study of computed tomographic angiography and magnetic resonance angiography. Eur. J. Plast. Surg. 2012;35(11):795–801.CrossRefGoogle Scholar
  41. 41.
    Kroll SS. Fat necrosis in free transverse rectus abdominis myocutaneous and deep inferior epigastric perforator flaps. Plast. Reconstr. Surg. 2000;106(3):576–83.PubMedCrossRefGoogle Scholar
  42. 42.
    Nahabedian MY, Momen B. Lower abdominal bulge after deep inferior epigastric perforator flap (DIEP) breast reconstruction. Ann. Plast. Surg. 2005;54(2):124–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Wechselberger G, Schoeller T, Bauer T, Ninkovic M, Otto A, Ninkovic M. Venous superdrainage in deep inferior epigastric perforator flap breast reconstruction. Plast Reconstr Surg. 2001;108(1):162–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Patel KM, Shuck J, Hung R, Hannan L, Nahabedian MY. Reinforcement of the abdominal wall following breast reconstruction with abdominal flaps: a comparison of synthetic and biological mesh. Plast. Reconstr. Surg. 2014;133(3):700–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Nahabedian MY. Achieving ideal donor site aesthetics with autologous breast reconstruction. Gland Surg. 2015a;4(2):145–53.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Liang DG, Dusseldorp JR, van Schalkwyk C, Hariswamy S, Wood S, Rose V, et al. Running barbed suture quilting reduces abdominal drainage in perforator-based breast reconstruction. J. Plast. Reconstr. Aesthet. Surg.: JPRAS. 2016;69(1):42–7.PubMedCrossRefGoogle Scholar
  47. 47.
    Nagarkar P, Lakhiani C, Cheng A, Lee M, Teotia S, Saint-Cyr M. No-drain DIEP flap donor-site closure using barbed progressive tension sutures. Plast. Reconstr. Surg. Glob. Open. 2016;4(4):e672.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Seo BF, Lee J, Oh DY. The efficacy of midline barbed absorbable sutures in progressive tension closure of abdominal flap donor sites. Arch. Aesthetic. Plast. Surg. 2018;24(1):14–9.CrossRefGoogle Scholar
  49. 49.
    Wagstaff MJ, Rozen WM, Whitaker IS, Schneider TN, Audolfsson T, Acosta R. Kirschner wires: a novel technique to assist abdominal closure utilising the viscoelastic properties of skin. J. Plast. Reconstr. Aesthet. Surg.: JPRAS. 2009;62(5):e115–6.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Feng LJ. Recipient vessels in free-flap breast reconstruction: a study of the internal mammary and thoracodorsal vessels. Plast. Reconstr. Surg. 1997;99(2):405–16.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Arnez ZM, Valdatta L, Tyler MP, Planinsek F. Anatomy of the internal mammary veins and their use in free TRAM flap breast reconstruction. Br. J. Plast. Surg. 1995;48(8):540–5.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Hefel L, Schwabegger A, Ninkovic M, Wechselberger G, Moriggl B, Waldenberger P, et al. Internal mammary vessels: anatomical and clinical considerations. Br. J. Plast. Surg. 1995;48(8):527–32.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Blondeel PN, Hijjawi J, Depypere H, Roche N, Van Landuyt K. Shaping the breast in aesthetic and reconstructive breast surgery: an easy three-step principle. Plast. Reconstr. Surg. 2009;123(2):455–62.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Nahabedian MY. Achieving ideal breast aesthetics with autologous reconstruction. Gland Surg. 2015b;4(2):134–44.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Chae MP, Rozen WM, Patel NG, Hunter-Smith DJ, Ramakrishnan V. Enhancing breast projection in autologous reconstruction using the St Andrew’s coning technique and 3D volumetric analysis. Gland Surg. 2017;6(6):706–14.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Darcy CM, Smit JM, Audolfsson T, Acosta R. Surgical technique: the intercostal space approach to the internal mammary vessels in 463 microvascular breast reconstructions. J. Plast. Reconstr. Aesthet. Surg.: JPRAS. 2011;64(1):58–62.PubMedCrossRefGoogle Scholar
  57. 57.
    Kim H, Lim SY, Pyon JK, Bang SI, Oh KS, Lee JE, et al. Rib-sparing and internal mammary artery-preserving microsurgical breast reconstruction with the free DIEP flap. Plast. Reconstr. Surg. 2013;131(3):327e–34e.PubMedCrossRefGoogle Scholar
  58. 58.
    Parrett BM, Caterson SA, Tobias AM, Lee BT. The rib-sparing technique for internal mammary vessel exposure in microsurgical breast reconstruction. Ann. Plast. Surg. 2008;60(3):241–3.PubMedCrossRefGoogle Scholar
  59. 59.
    Rosich-Medina A, Bouloumpasis S, Di Candia M, Malata CM. Total ‘rib’-preservation technique of internal mammary vessel exposure for free flap breast reconstruction: a 5-year prospective cohort study and instructional video. Ann. Med. Surg. 2015;4(3):293–300.CrossRefGoogle Scholar
  60. 60.
    Sacks JM, Chang DW. Rib-sparing internal mammary vessel harvest for microvascular breast reconstruction in 100 consecutive cases. Plast. Reconstr. Surg. 2009;123(5):1403–7.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Rozen WM, Ashton MW. The “limited rectus sheath incisions” technique for DIEP flaps using preoperative CT angiography. Microsurgery. 2009;29(7):525–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Hivelin M, Soprani A, Schaffer N, Hans S, Lantieri L. Minimally invasive laparoscopically dissected deep inferior epigastric artery perforator flap: an anatomical feasibility study and a first clinical case. Plast. Reconstr. Surg. 2018;141(1):33–9.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Gundlapalli VS, Ogunleye AA, Scott K, Wenzinger E, Ulm JP, Tavana L, et al. Robotic-assisted deep inferior epigastric artery perforator flap abdominal harvest for breast reconstruction: a case report. Microsurgery. 2018;38(6):702–5.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Ng RL, Youssef A, Kronowitz SJ, Lipa JE, Potochny J, Reece GP. Technical variations of the bipedicled TRAM flap in unilateral breast reconstruction: effects of conventional versus microsurgical techniques of pedicle transfer on complications rates. Plast. Reconstr. Surg. 2004;114(2):374–84. discussion 85–8.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Shafighi M, Constantinescu MA, Huemer GM, Olariu R, Bonel HM, Banic A, et al. The extended diep flap: extending the possibilities for breast reconstruction with tissue from the lower abdomen. Microsurgery. 2013;33(1):24–31.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Audolfsson T, Rozen WM, Wagstaff MJ, Whitaker IS, Acosta R. A reliable and aesthetic technique for cephalic vein harvest in DIEP flap surgery. J. Reconstr. Microsurg. 2009;25(5):319–21.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Boutros SG. Double venous system drainage in deep inferior epigastric perforator flap breast reconstruction: a single-surgeon experience. Plast. Reconstr. Surg. 2013;131(4):671–6.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Guzzetti T, Thione A. The basilic vein: an alternative drainage of DIEP flap in severe venous congestion. Microsurgery. 2008;28(7):555–8.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Tutor EG, Auba C, Benito A, Rabago G, Kreutler W. Easy venous superdrainage in DIEP flap breast reconstruction through the intercostal branch. J. Reconstr. Microsurg. 2002;18(7):595–8.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Casey WJ 3rd, Rebecca AM, Smith AA, Craft RO, Buchel EW. The cephalic and external jugular veins: important alternative recipient vessels in left-sided microvascular breast reconstruction. Microsurgery. 2007;27(5):465–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Kerr-Valentic MA, Gottlieb LJ, Agarwal JP. The retrograde limb of the internal mammary vein: an additional outflow option in DIEP flap breast reconstruction. Plast. Reconstr. Surg. 2009;124(3):717–21.PubMedCrossRefGoogle Scholar
  72. 72.
    La Padula S, Hersant B, Noel W, Niddam J, Hermeziu O, Bouhassira J, et al. Use of the retrograde limb of the internal mammary vein to avoid venous congestion in DIEP flap breast reconstruction: further evidences of a reliable and time-sparing procedure. Microsurgery. 2016;36(6):447–52.PubMedCrossRefGoogle Scholar
  73. 73.
    Mohebali J, Gottlieb LJ, Agarwal JP. Further validation for use of the retrograde limb of the internal mammary vein in deep inferior epigastric perforator flap breast reconstruction using laser-assisted indocyanine green angiography. J. Reconstr. Microsurg. 2010;26(2):131–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Salgarello M, Visconti G, Barone-Adesi L, Cina A. The retrograde limb of internal mammary vessels as reliable recipient vessels in DIEP flap breast reconstruction: a clinical and radiological study. Ann. Plast. Surg. 2015;74(4):447–53.PubMedCrossRefGoogle Scholar
  75. 75.
    Mackey SP, Ramsey KW. Exploring the myth of the valveless internal mammary vein – a cadaveric study. J. Plast. Reconstr. Aesthet Surg.: JPRAS. 2011;64(9):1174–9.PubMedCrossRefGoogle Scholar
  76. 76.
    Griffiths M, Chae MP, Rozen WM. Indocyanine green-based fluorescent angiography in breast reconstruction. Gland Surg. 2016;5(2):133–49.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Komorowska-Timek E, Gurtner GC. Intraoperative perfusion mapping with laser-assisted indocyanine green imaging can predict and prevent complications in immediate breast reconstruction. Plast. Reconstr. Surg. 2010;125(4):1065–73.PubMedCrossRefGoogle Scholar
  78. 78.
    Newman MI, Samson MC. The application of laser-assisted indocyanine green fluorescent dye angiography in microsurgical breast reconstruction. J. Reconstr. Microsurg. 2009;25(1):21–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Sharma HR, Rozen WM, Mathur B, Ramakrishnan V. 100 steps of a DIEP flap-a prospective comparative cohort series demonstrating the successful implementation of process mapping in microsurgery. Plast. Reconstr. Surg. Glob. Open. 2019;7(1):e2016.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Figus A, Wade RG, Oakey S, Ramakrishnan VV. Intraoperative esophageal Doppler hemodynamic monitoring in free perforator flap surgery. Ann. Plast. Surg. 2013;70(3):301–7.PubMedGoogle Scholar
  81. 81.
    Acosta R, Enajat M, Rozen WM, Smit JM, Wagstaff MJ, Whitaker IS, et al. Performing two DIEP flaps in a working day: an achievable and reproducible practice. J. Plast. Reconstr. Aesthet. Surg.: JPRAS. 2010;63(4):648–54.PubMedCrossRefGoogle Scholar
  82. 82.
    Liu Y, Zhao YF, Huang JT, Wu Y, Jiang L, Wang GD, et al. Analysis of 13 cases of venous compromise in 178 radial forearm free flaps for intraoral reconstruction. Int. J. Oral Maxillofac. Surg. 2012;41(4):448–52.PubMedCrossRefGoogle Scholar
  83. 83.
    Disa JJ, Cordeiro PG, Hidalgo DA. Efficacy of conventional monitoring techniques in free tissue transfer: an 11-year experience in 750 consecutive cases. Plast. Reconstr. Surg. 1999;104(1):97–101.PubMedCrossRefGoogle Scholar
  84. 84.
    Al-Dam A, Zrnc TA, Hanken H, Riecke B, Eichhorn W, Nourwali I, et al. Outcome of microvascular free flaps in a high-volume training Centre. Journal of cranio-maxillo-facial surgery: official publication of the European Association for Cranio-Maxillo-Facial. Surgery. 2014;42(7):1178–83.Google Scholar
  85. 85.
    Gao R, Loo S. Review of 100 consecutive microvascular free flaps. N. Z. Med. J. 2011;124(1345):49–56.PubMedGoogle Scholar
  86. 86.
    Yang Q, Ren ZH, Chickooree D, Wu HJ, Tan HY, Wang K, et al. The effect of early detection of anterolateral thigh free flap crisis on the salvage success rate, based on 10 years of experience and 1072 flaps. Int. J. Oral Maxillofac. Surg. 2014;43(9):1059–63.PubMedCrossRefGoogle Scholar
  87. 87.
    Koshima I, Fukuda H, Yamamoto H, Moriguchi T, Soeda S, Ohta S. Free anterolateral thigh flaps for reconstruction of head and neck defects. Plast. Reconstr. Surg. 1993;92(3):421–8. discussion 9–30.PubMedCrossRefGoogle Scholar
  88. 88.
    Siemionow M, Arslan E. Ischemia/reperfusion injury: a review in relation to free tissue transfers. Microsurgery. 2004;24(6):468–75.PubMedCrossRefGoogle Scholar
  89. 89.
    Chang EI, Carlsen BT, Festekjian JH, Da Lio AL, Crisera CA. Salvage rates of compromised free flap breast reconstruction after recurrent thrombosis. Ann. Plast. Surg. 2013;71(1):68–71.PubMedCrossRefGoogle Scholar
  90. 90.
    May JW Jr, Chait LA, O’Brien BM, Hurley JV. The no-reflow phenomenon in experimental free flaps. Plast. Reconstr. Surg. 1978;61(2):256–67.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Chae MP, Rozen WM, Whitaker IS, Chubb D, Grinsell D, Ashton MW, et al. Current evidence for postoperative monitoring of microvascular free flaps: a systematic review. Ann. Plast. Surg. 2015;74(5):621–32.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Creech B, Miller S. Evaluation of circulation in skin flaps. In: Grabb W, Myers M, editors. Skin flaps. Boston: Brown, Little; 1975.Google Scholar
  93. 93.
    Chang EI, Ibrahim A, Zhang H, Liu J, Nguyen AT, Reece GP, et al. Deciphering the sensitivity and specificity of the implantable Doppler probe in free flap monitoring. Plast. Reconstr. Surg. 2016a;137(3):971–6.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Rozen WM, Chubb D, Whitaker IS, Acosta R. The efficacy of postoperative monitoring: a single surgeon comparison of clinical monitoring and the implantable Doppler probe in 547 consecutive free flaps. Microsurgery. 2010c;30(2):105–10.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Schmulder A, Gur E, Zaretski A. Eight-year experience of the Cook-Swartz Doppler in free-flap operations: microsurgical and reexploration results with regard to a wide spectrum of surgeries. Microsurgery. 2011;31(1):1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Poder TG, Fortier PH. Implantable Doppler in monitoring free flaps: a cost-effectiveness analysis based on a systematic review of the literature. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2013;130(2):79–85.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Smit JM, Werker PM, Liss AG, Enajat M, de Bock GH, Audolfsson T, et al. Introduction of the implantable Doppler system did not lead to an increased salvage rate of compromised flaps: a multivariate analysis. Plast. Reconstr. Surg. 2010b;125(6):1710–7.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Whitaker IS, Rozen WM, Chubb D, Acosta R, Kiil BJ, Birke-Sorensen H, et al. Postoperative monitoring of free flaps in autologous breast reconstruction: a multicenter comparison of 398 flaps using clinical monitoring, microdialysis, and the implantable Doppler probe. J. Reconstr. Microsurg. 2010;26(6):409–16.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Ho MW, Cassidy C, Brown JS, Shaw RJ, Bekiroglu F, Rogers SN. Rationale for the use of the implantable Doppler probe based on 7 years’ experience. Br. J. Oral Maxillofac. Surg. 2014;52(6):530–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Wax MK. The role of the implantable Doppler probe in free flap surgery. Laryngoscope. 2014;124(Suppl 1):S1–12.PubMedCrossRefGoogle Scholar
  101. 101.
    Swartz WM, Jones NF, Cherup L, Klein A. Direct monitoring of microvascular anastomoses with the 20-MHz ultrasonic Doppler probe: an experimental and clinical study. Plast. Reconstr. Surg. 1988;81(2):149–61.PubMedCrossRefGoogle Scholar
  102. 102.
    Han ZF, Guo LL, Liu LB, Li Q, Zhou J, Wei AZ, et al. A comparison of the Cook-Swartz Doppler with conventional clinical methods for free flap monitoring: a systematic review and a meta-analysis. Int. J. Surg. (London, England). 2016;32:109–15.CrossRefGoogle Scholar
  103. 103.
    Chang TY, Lee YC, Lin YC, Wong ST, Hsueh YY, Kuo YL, et al. Implantable Doppler probes for postoperatively monitoring free flaps: efficacy. A systematic review and meta-analysis. Plast. Reconstr. Surg. Glob. Open. 2016b;4(11):e1099.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Frost MW, Niumsawatt V, Rozen WM, Eschen GE, Damsgaard TE, Kiil BJ. Direct comparison of postoperative monitoring of free flaps with microdialysis, implantable cook-Swartz Doppler probe, and clinical monitoring in 20 consecutive patients. Microsurgery. 2015;35(4):262–71.PubMedCrossRefGoogle Scholar
  105. 105.
    Whitney TM, Lineaweaver WC, Billys JB, Siko PP, Buncke GM, Alpert BS, et al. Improved salvage of complicated microvascular transplants monitored with quantitative fluorometry. Plast. Reconstr. Surg. 1992;90(1):105–11.PubMedCrossRefGoogle Scholar
  106. 106.
    Koolen PG, Vargas CR, Ho OA, Ibrahim AM, Ricci JA, Tobias AM, et al. Does increased experience with tissue oximetry monitoring in microsurgical breast reconstruction Lead to decreased flap loss? The learning effect. Plast. Reconstr. Surg. 2016;137(4):1093–101.PubMedCrossRefGoogle Scholar
  107. 107.
    Lin SJ, Nguyen MD, Chen C, Colakoglu S, Curtis MS, Tobias AM, et al. Tissue oximetry monitoring in microsurgical breast reconstruction decreases flap loss and improves rate of flap salvage. Plast. Reconstr. Surg. 2011;127(3):1080–5.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Warren Mathew Rozen
    • 1
  • Rafael Acosta
    • 2
  • Duncan Loi
    • 1
  1. 1.Department of Plastic, Reconstructive and Hand Surgery, Peninsula Health, Peninsula Clinical SchoolCentral School of Monash University, The Alfred CentreMelbourneAustralia
  2. 2.Department of Plastic and Reconstructive SurgeryGeelong HospitalGeelongAustralia

Personalised recommendations