Advertisement

QFactory: Classically-Instructed Remote Secret Qubits Preparation

  • Alexandru CojocaruEmail author
  • Léo Colisson
  • Elham Kashefi
  • Petros Wallden
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11921)

Abstract

The functionality of classically-instructed remotely prepared random secret qubits was introduced in (Cojocaru et al. 2018) as a way to enable classical parties to participate in secure quantum computation and communications protocols. The idea is that a classical party (client) instructs a quantum party (server) to generate a qubit to the server’s side that is random, unknown to the server but known to the client. Such task is only possible under computational assumptions. In this contribution we define a simpler (basic) primitive consisting of only BB84 states, and give a protocol that realizes this primitive and that is secure against the strongest possible adversary (an arbitrarily deviating malicious server). The specific functions used, were constructed based on known trapdoor one-way functions, resulting to the security of our basic primitive being reduced to the hardness of the Learning With Errors problem. We then give a number of extensions, building on this basic module: extension to larger set of states (that includes non-Clifford states); proper consideration of the abort case; and verifiablity on the module level. The latter is based on “blind self-testing”, a notion we introduced, proved in a limited setting and conjectured its validity for the most general case.

Keywords

Classical delegated quantum computation Learning With Errors Provable security 

Notes

Acknowledgements

LC is very grateful to Céline Chevalier for all the discussions he had with her, and to Antoine Joux for the very pertinent comments. He would also like to give a special thanks to Geoffroy Couteau, Omar Fawzi and Alain Passelègue who gave him great advices concerning security proof methods. AC and PW are very grateful to Atul Mantri, Thomas Zacharias, Yiannis Tselekounis and Vedran Dunjko for very helpful and interesting discussions. The work was supported by the following grants FA9550-17-1-0055, EPSRC grants: EP/N003829/1 and EP/M013243/1, and by the French ANR Project ANR-18-CE39-0015 CryptiQ.

References

  1. 1.
    Aaronson, S., Cojocaru, A., Gheorghiu, A., Kashefi, E.: On the implausibility of classical client blind quantum computing. arXiv preprint arXiv:1704.08482 (2017)
  2. 2.
    Aharonov, D., Ben-Or, M., Eban, E., Mahadev, U.: Interactive Proofs for Quantum Computations. arXiv e-prints, page arXiv:1704.04487, April 2017
  3. 3.
    Alagic, G., Dulek, Y., Schaffner, C., Speelman, F.: Quantum fully homomorphic encryption with verification. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 438–467. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70694-8_16CrossRefGoogle Scholar
  4. 4.
    Armknecht, F., Gagliardoni, T., Katzenbeisser, S., Peter, A.: General impossibility of group homomorphic encryption in the quantum world. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 556–573. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54631-0_32CrossRefGoogle Scholar
  5. 5.
    Arrighi, P., Salvail, L.: Blind quantum computation. Int. J. Quantum Inf. 04, 10 (2003)zbMATHGoogle Scholar
  6. 6.
    Azuma, K.: Weighted sums of certain dependent random variables. Tohoku Math. J. Second Ser. 19(3), 357–367 (1967)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brakerski, Z.: Quantum FHE (Almost) as secure as classical. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 67–95. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-96878-0_3CrossRefGoogle Scholar
  8. 8.
    Brakerski, Z., Christiano, P., Mahadev, U., Vazirani, U.V., Vidick, T.: A cryptographic test of quantumness and certifiable randomness from a single quantum device. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 320–331 (2018)Google Scholar
  9. 9.
    Brandao, F.G., Harrow, A.W.: Quantum de Finetti theorems under local measurements with applications. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC 2013, pp. 861–870. ACM, New York (2013)Google Scholar
  10. 10.
    Broadbent, A., Fitzsimons, J., Kashefi., J.: Universal blind quantum computation. In: Proceedings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp. 517–526. IEEE Computer Society, Washington, DC (2009)Google Scholar
  11. 11.
    Broadbent, A., Jeffery, S.: Quantum homomorphic encryption for circuits of low T-gate complexity. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 609–629. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_30CrossRefGoogle Scholar
  12. 12.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000). https://eprint.iacr.org/2000/067
  13. 13.
    Caves, C.M., Fuchs, C.A., Schack, R.: Unknown quantum states: the quantum de finetti representation. J. Math. Phys. 43(9), 4537–4559 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Childs, A.M.: Secure assisted quantum computation. Quantum Info. Comput. 5(6), 456–466 (2005)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Cojocaru, A., Colisson, L., Kashefi, E., Wallden, P.: On the possibility of classical client blind quantum computing. CoRR, abs/1802.08759 (2018)Google Scholar
  16. 16.
    Cojocaru, A., Colisson, L., Kashefi, E., Wallden, P.: QFactory: classically-instructed remote secret qubits preparation. arXiv e-prints arXiv:1904.06303, April 2019
  17. 17.
    Coladangelo, A., Grilo, A., Jeffery, S., Vidick, S.: Verifier-on-a-leash: new schemes for verifiable delegated quantum computation, with quasilinear resources. arXiv preprint arXiv:1708.07359 (2017)
  18. 18.
    Dulek, Y., Schaffner, C., Speelman, F.: Quantum homomorphic encryption for polynomial-sized circuits. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 3–32. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_1CrossRefGoogle Scholar
  19. 19.
    Dunjko, V., Kashefi, V.: Blind quantum computing with two almost identical states. arXiv e-prints arXiv:1604.01586, April 2016
  20. 20.
    Dunjko, V., Kashefi, E., Leverrier, A.: Blind quantum computing with weak coherent pulses. Phys. Rev. Lett. 108, 200502 (2011)CrossRefGoogle Scholar
  21. 21.
    Fitzsimons, J.F., Hajdusek, M., Morimae, T.: Post hoc verification of quantum computation. Phys. Rev. Lett. 120, 040501 (2018)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Fitzsimons, J.F., Kashefi, E.: Unconditionally verifiable blind quantum computation. Phys. Rev. A 96, 012303 (2017)CrossRefGoogle Scholar
  23. 23.
    Gheorghiu, A., Vidick, T.: Computationally-secure and composable remote state preparation. arXiv e-prints arXiv:1904.06320, April 2019
  24. 24.
    Giovannetti, V., Maccone, L., Morimae, T., Rudolph, T.G.: Efficient universal blind quantum computation. Phys. Rev. Lett. 111, 230501 (2013)CrossRefGoogle Scholar
  25. 25.
    Goldreich, O., Nisan, N., Wigderson, A.: On Yao’s XOR-Lemma. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation. LNCS, vol. 6650, pp. 273–301. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22670-0_23CrossRefzbMATHGoogle Scholar
  26. 26.
    Haur Yang, T., Navascués, M.: Robust self testing of unknown quantum systems into any entangled two-qubit states. Phys. Rev. A 87, 10 (2012)Google Scholar
  27. 27.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58(301), 13–30 (1963)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Klauck, H., Spalek, R., de Wolf, R.: Quantum and Classical Strong Direct Product Theorems and Optimal Time-Space Tradeoffs. arXiv e-prints, pages quant-ph/0402123, February 2004Google Scholar
  29. 29.
    Lai, C.-Y., Chung, K.-M.: On statistically-secure quantum homomorphic encryption. arXiv preprint arXiv:1705.00139 (2017)
  30. 30.
    Liang, M.: Quantum fully homomorphic encryption scheme based on universal quantum circuit. Quantum Inf. Process. 14(8), 2749–2759 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Magniez, F., Mayers, D., Mosca, M., Ollivier, H.: Self-testing of quantum circuits, January 2006Google Scholar
  32. 32.
    Mahadev, U.: Classical homomorphic encryption for quantum circuits. In: FOCS, pp. 332–338. IEEE Computer Society (2018)Google Scholar
  33. 33.
    Mahadev, U.: Classical verification of quantum computations. In: FOCS, pp. 259–267. IEEE Computer Society (2018)Google Scholar
  34. 34.
    Mantri, A., Pérez-Delgado, C.A., Fitzsimons, J.F.: Optimal blind quantum computation. Phys. Rev. Lett. 111(23), 230502 (2013)CrossRefGoogle Scholar
  35. 35.
    Maurer, U., Renner, R.: Abstract cryptography. In: In Innovations in Computer Science, Tsinghua University Press (2011)Google Scholar
  36. 36.
    Mayers, D., Yao, A.: Self testing quantum apparatus. Quantum Inf. Comput. 4, 273 (2003)MathSciNetzbMATHGoogle Scholar
  37. 37.
    McKague, M.: Self-testing graph states. In: Bacon, D., Martin-Delgado, M., Roetteler, M. (eds.) TQC 2011. LNCS, vol. 6745, pp. 104–120. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54429-3_7CrossRefGoogle Scholar
  38. 38.
    Mckague, M., Haur Yang, T., Scarani, V.: Robust self testing of the singlet. J. Phys. A Math. Theoretical 45, 045013 (2012)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_41CrossRefGoogle Scholar
  40. 40.
    Morimae, T., Dunjko, V., Kashefi, E.: Ground state blind quantum computation on aklt state. Quantum Info. Comput. 15(3–4), 200–234 (2015)MathSciNetGoogle Scholar
  41. 41.
    Morimae, T., Fujii, K.: Blind topological measurement-based quantum computation. Nature Commun. 3, 1036 (2012)CrossRefGoogle Scholar
  42. 42.
    Newman, M., Shi, Y.: Limitations on transversal computation through quantum homomorphic encryption. arXiv preprint arXiv:1704.07798 (2017)
  43. 43.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  44. 44.
    Ouyang, Y., Tan, S.-H., Fitzsimons, J.: Quantum homomorphic encryption from quantum codes. arXiv preprint arXiv:1508.00938 (2015)
  45. 45.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 333–342. ACM, New York (2009)Google Scholar
  46. 46.
    Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)CrossRefGoogle Scholar
  47. 47.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC 2005, pp. 84–93. ACM, New York (2005)Google Scholar
  48. 48.
    Reichardt, B.W., Unger, F., Vazirani, U.: A classical leash for a quantum system: command of quantum systems via rigidity of CHSH games. In: Proceedings of the 4th Conference on Innovations in Theoretical Computer Science, ITCS 2013, pp. 321–322. ACM, New York (2013)Google Scholar
  49. 49.
    Sherstov, A.A.: Strong direct product theorems for quantum communication and query complexity. arXiv e-prints arXiv:1011.4935, November 2010
  50. 50.
    Tan, S.-H., Kettlewell, J.A., Ouyang, Y., Chen, L., Fitzsimons, J.F.: A quantum approach to homomorphic encryption. Sci. Rep. 6, 33467 (2016)CrossRefGoogle Scholar
  51. 51.
    van Dam, W., Magniez, F., Mosca, M., Santha, M.: Self-testing of universal and fault-tolerant sets of quantum gates. SIAM J. Comput. 37(2), 611–629 (2007)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Viola, E., Wigderson, A.: Norms, XOR lemmas, and lower bounds for polynomials and protocols. Theory Comput. 4(7), 137–168 (2008)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Wehner, S., Elkouss, D., Hanson, R.: Quantum internet: a vision for the road ahead. Science 362(6412), 303 (2018)MathSciNetCrossRefGoogle Scholar
  54. 54.
    Yu, L., Pérez-Delgado, C.A., Fitzsimons, J.F.: Limitations on information-theoretically-secure quantum homomorphic encryption. Phys. Rev. A 90(5), 050303 (2014)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2019

Authors and Affiliations

  • Alexandru Cojocaru
    • 1
    Email author
  • Léo Colisson
    • 2
  • Elham Kashefi
    • 1
    • 2
  • Petros Wallden
    • 1
  1. 1.School of InformaticsUniversity of EdinburghEdinburghUK
  2. 2.Laboratoire d’Informatique de Paris 6 (LIP6)Sorbonne UniversitéParis CEDEX 05France

Personalised recommendations