Advertisement

Search for Massive Supersymmetry at 13 TeV

  • Giordon Stark
Chapter
  • 11 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter presents a search for supersymmetry involving pair-produced gluinos decaying via off-shell top squarks into the lightest neutralino and third-generation SM particles, top quarks. This analysis was performed using 36.1 ifb of data collected by the ATLAS experiment in 2015 and 2016.In the Run-I iteration of this analysis in 2014, no significant excess of events over the expected SM background was observed and a lower limit on the gluino mass was set to be at 1.4 TeV at the 95% confidence level for this signal model. I discuss the work done during the Run-2 iteration of this analysis, also observing no significant excess, and setting a much stronger lower limit on the gluino mass to 2.1 TeV at the 95% confidence level.

Keywords

Supersymmetry Gluinos Pair-produced gluinos Top Top squarks Off-shell top squarks Neutralino Lightest neutralino LSP Semi-data-driven Cut-and-count Discovery Systematics Signal regions Control regions Validation regions Data/MC comparisons Preselection Object multiplicity Effective mass Transverse mass Total jet mass Multijet suppression Event cleaning Optimization 

References

  1. 15.
    D. Alves, Simplified models for LHC new physics searches. J. Phys. G39, 105005 (2012). Ed. by Nima Arkani-Hamed et al. https://doi.org/10.1088/0954-3899/39/10/105005. arXiv: 1105.2838 [hep-ph]
  2. 16.
    J. Alwall, P. Schuster, N. Toro, Simplified models for a first characterization of new physics at the LHC. Phys. Rev. D79, 075020 (2009).  https://doi.org/10.1103/PhysRevD.79.075020. arXiv: 0810.3921 [hep-ph]
  3. 20.
    J.-F. Arguin et al., Search for gluino-mediated stop and sbottom pair production in events with b-jets and large missing transverse momentum (2015). Technical Report. ATL-COM-PHYS-2015-319. Geneva: CERN. https://cds.cern.ch/record/2011623
  4. 21.
    J.-F. Arguin et al., Search for gluino-mediated stop and sbottom pair production in events with b-jets and large missing transverse momentum (2016). Technical Report. ATL-COM-PHYS-2016-1592. Geneva: CERN. https://cds.cern.ch/record/2231120
  5. 38.
    ATLAS Collaboration, Search for new phenomena in final states with large jet multiplicities and missing transverse momentum at \(\sqrt {s} = 8\) TeV proton-proton collisions using the ATLAS experiment. J. High Energy Phys. 10, 130 (2013).  https://doi.org/10.1007/JHEP10(2013)130. arXiv: 1308.1841 [hep-ex]. Erratum in: J. High Energy Phys. 1, 109 (2014).  https://doi.org/10.1007/JHEP01(2014)109
  6. 39.
    ATLAS Collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 47fb−1 of \(\sqrt {s} = 7\) TeV proton-proton collision data. Phys. Rev. D 87, 012008 (2013).  https://doi.org/10.1103/PhysRevD.87.012008. arXiv: 1208.0949 [hep-ex]
  7. 43.
    ATLAS Collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb−1 of \(\sqrt {s} = 7\) TeV proton-proton collision data. Phys. Rev. D 87(1), 12008 (2013).  https://doi.org/10.1103/PhysRevD.87.012008. arXiv: 1208.0949 [hep-ex]
  8. 46.
    ATLAS Collaboration, Search for strong production of supersymmetric particles in final states with missing transverse momentum and at least three b-jets at \(\sqrt {s} = 8\) TeV proton-proton collisions with the ATLAS detector. J. High Energy Phys. 10, 24 (2014).  https://doi.org/10.1007/JHEP10(2014)024. arXiv: 1407.0600 [hep-ex]
  9. 59.
    ATLAS Collaboration, Search for massive supersymmetric particles decaying to many jets using the ATLAS detector in pp collisions at \(\sqrt {s} = 8\) TeV. Phys. Rev. D 91, 112016 (2015).  https://doi.org/10.1103/PhysRevD.91.112016. arXiv: 1502.05686 [hep-ex]. Erratum in: Phys. Rev. D 93, 39901 (2016).  https://doi.org/10.1103/PhysRevD.93.039901
  10. 61.
    ATLAS Collaboration, Jet calibration and systematic uncertainties for jets reconstructed in the ATLAS detector at s= 13 TeV ATL-PHYS-PUB-2015-15 (2015). https://cds.cern.ch/record/2037613 Google Scholar
  11. 67.
    ATLAS Collaboration, Selection of jets produced in 13 TeV proton-proton collisions with the ATLAS detector (2015). ATLAS-CONF-2015029. https://cds.cern.ch/record/2037702
  12. 79.
    ATLAS Collaboration, Search for pair production of gluinos decaying via stop and sbottom in events with b-jets and large missing transverse momentum in pp collisions at \(\sqrt {s}= 13\) TeV with the ATLAS detector. Phys. Rev. D 94, 032003 (2016).  https://doi.org/10.1103/PhysRevD.94.032003. arXiv: 1605.09318 [hep-ex]
  13. 80.
    ATLAS Collaboration, Measurements of fiducial cross-sections for \(t\bar {t}\) production with one or two additional b-jets in pp collisions at \(\sqrt {s} = 8\) TeV using the ATLAS detector. Eur. Phys. J. C 76, 11 (2016).  https://doi.org/10.1140/epjc/s10052-015-3852-4. arXiv: 1508.06868 [hep-ex]
  14. 82.
    ATLAS Collaboration, Search for supersymmetry in final states with missing transverse momentum and multiple b-jets in proton–proton collisions at \(\sqrt {s} = 13\) TeV with the ATLAS detector (2017). arXiv: 1711.01901 [hep-ex]
  15. 99.
    M. Baak et al., HistFitter software framework for statistical data analysis. Eur. Phys. J. C 75, 153 (2015).  https://doi.org/10.1140/epjc/s10052-015-3327-7. arXiv: 1410.1280 [hep-ex]
  16. 111.
    W. Beenakker et al., Squark and gluino production at hadron colliders. Nucl. Phys. B 492, 51–103 (1997). https://doi.org/10.1016/S0550-3213(97)00084-9. arXiv: hep-ph/9610490
  17. 113.
    W. Beenakker et al., Squark and gluino hadroproduction. Int. J. Mod. Phys. A 26, 2637–2664 (2011). https://doi.org/10.1142/S0217751X11053560. arXiv: 1105.1110 [hep-ph]
  18. 119.
    C. Borschensky et al., Squark and gluino production cross sections in pp collisions at \(\sqrt {s}= 13, 14, 33\) and 100 TeV. Eur. Phys. J. C74(12), 3174 (2014).  https://doi.org/10.1140/epjc/s10052-014-3174-y. arXiv: 1407.5066 [hep-ph]
  19. 143.
    T. Cohen et al., Dissecting jets and missing energy searches using n-body extended simplified models. J. High Energy Phys. 8, 38 (2016).  https://doi.org/10.1007/JHEP08(2016)038. arXiv: 1605.01416 [hep-ph]
  20. 148.
    G. Cowan et al., Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 71, 1554 (2011).  https://doi.org/10.1140/epjc/s10052-011-1554-0. arXiv: 1007.1727 [physics.data-an]. Erratum: Eur. Phys. J. C 73, 2501 (2013)
  21. 149.
    K. Cranmer, I. Yavin, RECAST: extending the impact of existing analyses. J. High Energy Phys. 4, 38 (2010).  https://doi.org/10.1007/JHEP04(2011)038. arXiv: 1010.2506 [hep-ex]
  22. 189.
    P. Kant et al., HatHor for single top-quark production: updated predictions and uncertainty estimates for single top-quark production in hadronic collisions. Comput. Phys. Commun. 191, 74–89 (2015). https://doi.org/10.1016/j.cpc.2015.02.001. arXiv: 1406.4403 [hep-ph]
  23. 197.
    A. Kulesza, L. Motyka, Threshold resummation for squark-antisquark and gluino-pair production at the LHC. Phys. Rev. Lett. 102, 111802 (2009).  https://doi.org/10.1103/PhysRevLett.102.111802. arXiv: 0807.2405 [hep-ph]
  24. 198.
    A. Kulesza, L. Motyka, Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC. Phys. Rev. D 80, 095004 (2009).  https://doi.org/10.1103/PhysRevD.80.095004. arXiv: 0905.4749 [hep-ph]
  25. 243.
    P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes. Phys. Rev. D 82, 074018 (2010).  https://doi.org/10.1103/PhysRevD.82.074018. arXiv: 1005.3457 [hep-ph]

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Giordon Stark
    • 1
  1. 1.University of ChicagoChicagoUSA

Personalised recommendations