Advertisement

Ecotoxicity of Metallic Nanoparticles and Possible Strategies for Risk Assessment

  • Ifra Zoomi
  • Harbans Kaur Kehri
  • Ovaid Akhtar
  • Dheeraj Pandey
  • Pragya Srivastava
  • Raghvendra Pratap Narayan
Chapter
  • 96 Downloads
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Nanoparticles are defined as particulate matter, usually with nanoscale dimensions (1–100 nm). Nanoparticles are broadly categorized into two groups: (i) carbon-containing nanoparticles and (ii) metallic nanoparticles. Metals such as gold (Au), iron (Fe), silver (Ag), and copper (Cu), and metal oxides such as titanium dioxide (TiO2), antimony oxide (Sb2O3), cerium dioxide (CeO2), copper oxide (CuO), nickel oxide (NiO), iron oxide (FeO), and zinc oxide (ZnO), are used for the synthesis of metallic nanoparticles. At the present time, metallic nanoparticles are being widely used at a commercial level, which has resulted in great possibilities for their interactions with green plants, human beings, microorganisms, animals, and their surrounding environment. Therefore, detailed understanding of their synthesis, interaction, and possible risk valuation would offer a foundation for harmless use of nanoparticles with insignificant effects on the environment. This chapter focuses on the hazardous aspects of nanoparticles that arise during synthesis and application. Possible strategies for risk assessment are also discussed in detail.

Keywords

Toxicity Nanoparticles Metals Synthesis 

Notes

Acknowledgments

The authors thank the Head of the Botany Department, University of Allahabad, Allahabad, for providing the necessary facilities, and are also grateful to UGC and CSIR for providing financial support to Ifra Zoomi, Pragya Srivastava, Dheeraj Pandey, and Ovaid Akhtar.

References

  1. Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcariabifurcata). Appl Nanosci 4(5):571–576CrossRefGoogle Scholar
  2. Abdeen S, Geo S, Sukanya S, Praseetha PK, Dhanya RP (2014) Biosynthesis of silver nanoparticles from Actinomycetes for therapeutic applications. Int J Nano Dimens 5(2):155–162Google Scholar
  3. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusariumoxysporum. Colloids Surf B Bioint 28(4):313–318CrossRefGoogle Scholar
  4. Akthakul A, Hochbaum AI, Stellacci F, Mayes AM (2005) Size fractionation of metal nanoparticles by membrane filtration. Adv Mater 17:532CrossRefGoogle Scholar
  5. Ankamwar B, Chaudhary M, Sastry M (2005) Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth React Inorg Metal-Org Nano-Metal Chem 35(1):19–26CrossRefGoogle Scholar
  6. Arif N, Yadav V, Singh S, Tripathi DK, Dubey NK, Chauhan DK, Giorgetti L (2018) Interaction of copper oxide nanoparticles with plants: uptake, accumulation, and toxicity. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 297–310CrossRefGoogle Scholar
  7. Aruoja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriellasubcapitata. Sci Total Environ 407(4):1461–1468PubMedCrossRefPubMedCentralGoogle Scholar
  8. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634PubMedCrossRefPubMedCentralGoogle Scholar
  9. Badireddy AR, Hotze EM, Chellam S, Alvarez P, Wiesner MR (2007) Inactivation of bacteriophages via photosensitization of fullerol nanoparticles. Environ Sci Technol 41:6627–6632PubMedCrossRefPubMedCentralGoogle Scholar
  10. Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409(8):1603–1608PubMedCrossRefPubMedCentralGoogle Scholar
  11. Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17(5):387–395PubMedCrossRefPubMedCentralGoogle Scholar
  12. Blaise C, Gagné F, Ferard JF, Eullaffroy P (2008) Ecotoxicity of selected nano-materials to aquatic organisms. Environ Toxicol Int J 5:591–598CrossRefGoogle Scholar
  13. Bosetti M, Masse A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23(3):887–892PubMedCrossRefPubMedCentralGoogle Scholar
  14. Carnes CL, Klabunde KJ (2003) The catalytic methanol synthesis over nanoparticle metal oxide catalysts. J Mol Catal A Chem 194(1–2):227–236CrossRefGoogle Scholar
  15. Chan NY, Zhao M, Wang N, Au K, Wang J, Chan LW, Dai J (2013) Palladium nanoparticle enhanced giant photoresponse at LaAlO3/SrTiO3 two-dimensional electron gas heterostructures. ACS Nano 7(10):8673–8679PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chen L, Zhou L, Liu Y, Deng S, Wu H, Wang G (2012) Toxicological effects of nanometer titanium dioxide (nano-TiO2) on Chlamydomonasreinhardtii. Ecotox Environ Safe 84:155–162CrossRefGoogle Scholar
  17. Cheng N, Tian J, Liu Q, Ge C, Qusti AH, Asiri AM, Al-Youbi AO, Sun X (2013) Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants. ACS Appl Mater Inter 5(15):6815–6819CrossRefGoogle Scholar
  18. Cherchi C, Chernenko T, Diem M, Gu AZ (2011) Impact of nano titanium dioxide exposure on cellular structure of Anabaena variabilis and evidence of internalization. Environ Toxicol Chem 30(4):861–869PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cho M, Chung H, Choi W, Yoon J (2005) Different inactivation behavior of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol 71(1):270–275PubMedPubMedCentralCrossRefGoogle Scholar
  20. Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42(12):3066–3074PubMedCrossRefPubMedCentralGoogle Scholar
  21. Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu DY (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. AquatToxicol 100(2):151–159Google Scholar
  22. Choi H, Ko SJ, Choi Y, Joo P, Kim T, Lee BR, Jung JW, Choi HJ, Cha M, Jeong JR, Hwang IW (2013) Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat Photon 7(9):732CrossRefGoogle Scholar
  23. Choopun S, Tubtimtae A, Santhaveesuk T, Nilphai S, Wongrat E, Hongsith N (2009) Zinc oxide nanostructures for applications as ethanol sensors and dye-sensitized solar cells. Appl Surf Sci 256(4):998–1002CrossRefGoogle Scholar
  24. Chrastina A, Schnitzer JE (2010) Iodine-125 radiolabeling of silver nanoparticles for in vivo SPECT imaging. Int J Nanomedicine 5:653PubMedPubMedCentralGoogle Scholar
  25. Christian P, Von der Kammer F, Baalousha M, Hofmann T (2008) Nanoparticles: structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17(5):326–343PubMedCrossRefPubMedCentralGoogle Scholar
  26. Djurišić AB, Ng AM, Chen XY (2010) ZnO nanostructures for optoelectronics: material properties and device applications. Prog Quantum Electron 34(4):191–259CrossRefGoogle Scholar
  27. Durán N, Marcato PD, De Souza GI, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3(2):203–208CrossRefGoogle Scholar
  28. El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834PubMedCrossRefPubMedCentralGoogle Scholar
  29. Espitia PJ, Soares ND, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Tech 5(5):1447–1464CrossRefGoogle Scholar
  30. Federici G, Shaw BJ, Handy RD (2007) Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchusmykiss): gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84(4):415–430PubMedCrossRefGoogle Scholar
  31. Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 4:1659–1664CrossRefGoogle Scholar
  32. Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, ImHof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113(11):1555PubMedPubMedCentralCrossRefGoogle Scholar
  33. Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M (2014) Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98(19):8083–8097PubMedCrossRefGoogle Scholar
  34. Gulson B, McCall MJ, Bowman DM, Pinheiro T (2015) A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies. Arch Toxicol 89(11):1909–1930PubMedCrossRefGoogle Scholar
  35. Guo JZ, Cui H, Zhou W, Wang W (2008) Ag nanoparticle-catalyzed chemiluminescent reaction between luminol and hydrogen peroxide. J Photochem Photobiol A Chem 193(2–3):89–96CrossRefGoogle Scholar
  36. Gupta N, Singh HP, Sharma RK (2010) Single-pot synthesis: plant mediated gold nanoparticles catalyzed reduction of methylene blue in presence of stannous chloride. Colloids Surf A Physicochem Eng Asp 367(1–3):102–107CrossRefGoogle Scholar
  37. Hardman R (2006) Atoxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114(2):165PubMedCrossRefPubMedCentralGoogle Scholar
  38. Hartmann NB, Von der Kammer F, Hofmann T, Baalousha M, Ottofuelling S, Baun A (2010) Algal testing of titanium dioxide nanoparticles—testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology 269(2–3):190–197PubMedCrossRefGoogle Scholar
  39. Hoch LB, Mack EJ, Hydutsky BW, Hershman JM, Skluzacek JM, Mallouk TE (2008) Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environ Sci Technol 42(7):2600–2605PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hola K, Markova Z, Zoppellaro G, Tucek J, Zboril R (2015) Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol Adv 33(6):1162–1176PubMedCrossRefPubMedCentralGoogle Scholar
  41. Howell KA, Achterberg EP, Tappin AD, Worsfold PJ (2006) Colloidal metals in the tamar estuary and their influence on metal fractionation by membrane filtration. Environ Chem 3:199–207CrossRefGoogle Scholar
  42. Hund-Rinke K, Simon M (2006) Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ Sci Pollut Res 13(4):225–232CrossRefGoogle Scholar
  43. Hvolbæk B, Janssens TV, Clausen BS, Falsig H, Christensen CH, Nørskov JK (2007) Catalytic activity of Au nanoparticles. Nano Today 2(4):14–18CrossRefGoogle Scholar
  44. Jose-Yacaman M, Marin-Almazo M, Ascencio JA (2001) High resolution TEM studies on palladium nanoparticles. J Mol Catal A 173:61–74CrossRefGoogle Scholar
  45. Kamat PV, Meisel D (2003) Nanoscience opportunities in environmental remediation. C R Chim 6(8–10):999–1007CrossRefGoogle Scholar
  46. Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano-and micrometer size. Toxicol Lett 188(2):112–118PubMedCrossRefGoogle Scholar
  47. Khatami M, Pourseyedi S, Khatami M, Hamidi H, Zaeifi M, Soltani L (2015) Synthesis of silver nanoparticles using seed exudates of Sinapisarvensis as a novel bioresource, and evaluation of their antifungal activity. Bioresour Bioprocess 2(1):19CrossRefGoogle Scholar
  48. Khus M, Gernjak W, Ibanez PF, Rodriguez SM, Galvez JB, Icli S (2006) A comparative study of supported TiO2 as photocatalyst in water decontamination at solar pilot plant scale. J Sol Energy 128:331–337CrossRefGoogle Scholar
  49. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101CrossRefGoogle Scholar
  50. Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851PubMedCrossRefPubMedCentralGoogle Scholar
  51. Köhler JM, Abahmane L, Wagner J, Albert J, Mayer G (2008) Preparation of metal nanoparticles with varied composition for catalytical applications in microreactors. Chem Eng Sci 63(20):5048–5055CrossRefGoogle Scholar
  52. Koul A, Kumar A, Singh VK, Tripathi DK, Mallubhotla S (2018) Exploring plant-mediated copper, iron, titanium, and cerium oxide nanoparticles and their impacts. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 175–194CrossRefGoogle Scholar
  53. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011a) Cellular uptake and mutagenic potential of metal oxide nanoparticles in bacterial cells. Chemosphere 83(8):1124–1132PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011b) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51(10):1872–1881PubMedCrossRefPubMedCentralGoogle Scholar
  55. Kumar B, Smita K, Cumbal L, Debut A, Pathak RN (2014) Sonochemical synthesis of silver nanoparticles using starch: a comparison. Bioinorg Chem Appl 2014:1–8Google Scholar
  56. Kundu S, Ghosh SK, Mandal M, Pal T (2002) Silver and gold nanocluster catalyzed reduction of methylene blue by arsine in micellar medium. Bull Mater Sci 25(6):577–579CrossRefGoogle Scholar
  57. Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3(3):159–171CrossRefGoogle Scholar
  58. Lee SW, Kim SM, Choi J (2009) Genotoxicity and ecotoxicity assays using the freshwater crustacean Daphnia magna and the larva of the aquatic midge Chironomusriparius to screen the ecological risks of nanoparticle exposure. Environ Toxicol Pharmacol 28(1):86–91PubMedCrossRefPubMedCentralGoogle Scholar
  59. Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mat Sci 31(4):111–122CrossRefGoogle Scholar
  60. Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9(8):852–858CrossRefGoogle Scholar
  61. Li H, Wang W, Gong Z, Yu Y, Chen H, Xia J (2015) Shape-controlled synthesis of nickel phosphide nanocrystals and their application as hydrogen evolution reaction catalyst. J Phys Chem Solids 80:22–25CrossRefGoogle Scholar
  62. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41(11):4158–4163PubMedCrossRefPubMedCentralGoogle Scholar
  63. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250PubMedCrossRefPubMedCentralGoogle Scholar
  64. Liu S, Dai Z, Chen H, Ju H (2004) Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor. Biosens Bioelectron 19(9):963–969PubMedCrossRefPubMedCentralGoogle Scholar
  65. Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem Int J 25(4):1132–1137CrossRefGoogle Scholar
  66. Mak SY, Chen DH (2004) Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles. Dyes Pigments 61(1):93–98CrossRefGoogle Scholar
  67. Mann S (ed) (1996) Biomimetic materials chemistry. VCH, New York, pp 1–40Google Scholar
  68. Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281PubMedPubMedCentralCrossRefGoogle Scholar
  69. Melegari SP, Perreault F, Costa RH, Popovic R, Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonasreinhardtii. Aquat Toxicol 142:431–440PubMedCrossRefPubMedCentralGoogle Scholar
  70. Miller RJ, Bennett S, Keller AA, Pease S, Lenihan HS (2012) TiO2 nanoparticles are phototoxic to marine phytoplankton. PLoS One 7(1):e30321PubMedPubMedCentralCrossRefGoogle Scholar
  71. Moos PJ, Chung K, Woessner D, Honeggar M, Cutler NS, Veranth JM (2010) ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Chem Res Toxicol 23(4):733–739PubMedCrossRefPubMedCentralGoogle Scholar
  72. Mornet S, Vasseur S, Grasse F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Chem 34(2–4):237–247CrossRefGoogle Scholar
  73. Mortimer M, Kasemets K, Heinlaan M, Kurvet I, Kahru A (2008) High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles. Toxicol In Vitro 22(5):1412–1417PubMedCrossRefPubMedCentralGoogle Scholar
  74. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519CrossRefGoogle Scholar
  75. Mukherjee P, Bhattacharya R, Bone N, Lee YK, Patra CR, Wang S, Lu L, Secreto C, Banerjee PC, Yaszemski MJ, Kay NE (2007) Potential therapeutic application of gold nanoparticles in B-chronic lymphocytic leukemia (BCLL): enhancing apoptosis. J Nanobiotechnol 5(1):4CrossRefGoogle Scholar
  76. Nasrollahzadeh M, Sajadi SM, Maham M (2015) Green synthesis of palladium nanoparticles using Hippophaerhamnoides Linn leaf extract and their catalytic activity for the Suzuki–Miyaura coupling in water. J Mol Catal A Chem 396:297–303CrossRefGoogle Scholar
  77. Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonasreinhardtii. Environ Sci Technol 42(23):8959–8964PubMedCrossRefPubMedCentralGoogle Scholar
  78. Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliellatertiolecta. Ecotoxicol Environ Safe 78:80–85CrossRefGoogle Scholar
  79. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mat 9(3):035004CrossRefGoogle Scholar
  80. Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5(5):1CrossRefGoogle Scholar
  81. Pradhan A, Seena S, Pascoal C, Cássio F (2012) Copper oxide nanoparticles can induce toxicity to the freshwater shredder Allogamusligonifer. Chemosphere 89(9):1142–1150PubMedCrossRefPubMedCentralGoogle Scholar
  82. Pujalté I, Passagne I, Brouillaud B, Tréguer M, Durand E, Ohayon-Courtès C, L’Azou B (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8(1):1CrossRefGoogle Scholar
  83. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83PubMedPubMedCentralCrossRefGoogle Scholar
  84. Rai M, Deshmukh SD, Ingle AP, Gupta IR, Galdiero M, Galdiero S (2016) Metal nanoparticles: the protective nanoshield against virus infection. Crit Rev Microbiol 42(1):46–56PubMedCrossRefPubMedCentralGoogle Scholar
  85. Raman CD, Kanmani S (2016) Textile dye degradation using nano zero valent iron: a review. J Environ Manag 177:341–355CrossRefGoogle Scholar
  86. Renault S, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Mornet S, Brisson A (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmussubspicatus) and a benthic bivalve (Corbiculafluminea). Gold Bull 41(2):116–126CrossRefGoogle Scholar
  87. Saifuddin N, Wong CW, Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem 6(1):61–70Google Scholar
  88. Sau TK, Rogach AL, Jäckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mat 22(16):1805–1825CrossRefGoogle Scholar
  89. Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42(5):919–923CrossRefGoogle Scholar
  90. Sharma VK (2009) Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—a review. J Environ Sci Health A 44(14):1485–1495CrossRefGoogle Scholar
  91. Shweta, Vishwakarma K, Sharma S, Narayan RP, Srivastava P, Khan AS, Dubey NK, Tripathi DK, Chauhan DK (2017) Plants and carbon nanotubes (CNTs) interface: present status and future prospects. In: Nanotechnology. Springer, Singapore, pp 317–340CrossRefGoogle Scholar
  92. Shweta, Tripathi DK, Chauhan DK, Peralta-Videa JR (2018) Availability and risk assessment of nanoparticles in living systems: a virtue or a peril? In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 1–31Google Scholar
  93. Simkiss K, Wilbur KM (1989) Biomineralization. Academic Press, New YorkGoogle Scholar
  94. Singaravelu G, Arockiamary JS, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassumwightii Greville. Colloids Surf B Biointer 57(1):97–101CrossRefGoogle Scholar
  95. Singh M, Singh S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomater Bios 3(3):115–122Google Scholar
  96. Singh S, Tripathi DK, Dubey NK, Chauhan DK (2016) Effects of nano-materials on seed germination and seedling growth: striking the slight balance between the concepts and controversies. Mater Focus 5(3):195–201CrossRefGoogle Scholar
  97. Singh J, Vishwakarma K, Ramawat N, Rai P, Singh VK, Mishra RK, Kumar V, Tripathi DK, Sharma S (2019) Nanomaterials and microbes’ interactions: a contemporary overview. 3 Biotech 9(3):68PubMedCrossRefPubMedCentralGoogle Scholar
  98. Tedesco S, Doyle H, Blasco J, Redmond G, Sheehan D (2010) Oxidative stress and toxicity of gold nanoparticles in Mytilusedulis. Aquat Toxicol 100(2):178–186PubMedCrossRefPubMedCentralGoogle Scholar
  99. Thanh NT, Rosenzweig Z (2002) Development of an aggregation-based immunoassay for anti-protein a using gold nanoparticles. Anal Chem 74(7):1624–1628PubMedCrossRefPubMedCentralGoogle Scholar
  100. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Scitechnol 40(19):6151–6156CrossRefGoogle Scholar
  101. Throbäck IN, Johansson M, Rosenquist M, Pell M, Hansson M, Hallin S (2007) Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil. FEMS Microbiol Lett 270(2):189–194PubMedCrossRefPubMedCentralGoogle Scholar
  102. Tomczak MM, Slocik JM, Stone MO, Naik RR (2007) Bio-based approaches to inorganic material synthesis. Biochem Soc Trans 35:512–515PubMedCrossRefPubMedCentralGoogle Scholar
  103. Tripathi DK, Ahmad P, Sharma S, Chauhan DK, Dubey NK (eds) (2017) Nanomaterials in plants, algae, and microorganisms: concepts and controversies, vol vol. 1. Academic Press, LondonGoogle Scholar
  104. Tsao N, Kanakamma PP, Luh TY, Chou CK, Lei HY (1999) Inhibition of Escherichia coli-induced meningitis by carboxyfullerene. Antimicrob Agents Chemother 43:2273–2277PubMedPubMedCentralCrossRefGoogle Scholar
  105. Viguie JR, Sukmanowski J, Nolting B, Royer FX (2007) Study of agglomeration of alumina nanoparticles by atomic force microscopy (AFM) and photon correlation spectroscopy (PCS). Colloids Surf A Physicochem Eng Asp 302:269–275CrossRefGoogle Scholar
  106. Vishwakarma K, Upadhyay N, Kumar N, Tripathi DK, Chauhan DK, Sharma S, Sahi S (2018) Potential applications and avenues of nanotechnology in sustainable agriculture. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 473–500CrossRefGoogle Scholar
  107. Wang MF, Dykstra TE, Lou XD, Salvador MR, Scholes GD, Winnik MA (2006) Colloidal CdSenanocrystalspassivated by a dye-labeled multidentate polymer: quantitative analysis by size-exclusion chromatography. Angew Chem Int Ed 45:2221–2224CrossRefGoogle Scholar
  108. Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11(2):454–463PubMedCrossRefPubMedCentralGoogle Scholar
  109. Wise JP Sr, Goodale BC, Wise SS, Craig GA, Pongan AF, Walter RB, Thompson WD, Ng AK, Aboueissa AM, Mitani H, Spalding MJ (2010) Silver nanospheres are cytotoxic and genotoxic to fish cells. Aquat Toxicol 97(1):34–41PubMedCrossRefPubMedCentralGoogle Scholar
  110. Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103CrossRefGoogle Scholar
  111. Yadav A, Kon K, Kratosova G, Duran N, Ingle AP, Rai M (2015) Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnol Lett 37(11):2099–2120PubMedCrossRefPubMedCentralGoogle Scholar
  112. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158(2):122–132PubMedCrossRefPubMedCentralGoogle Scholar
  113. Zemke-White WL, Clements KD, Harris PJ (2000) Acid lysis of macroalgae by marine herbivorous fishes: effects of acid pH on cell wall porosity. J Exp Mar Bio Ecol 245:57–68CrossRefGoogle Scholar
  114. Zhao XU, Liz W, Chen Y, Ahi LY, Zhu YF (2007) Solid-phase photocatalytic degradation of polyethylene plastic under UV and solar light irradiation. J Mol Catal A Chem 268:101–106CrossRefGoogle Scholar
  115. Zhao X, Liu W, Cai Z, Han B, Qian T, Zhao D (2016) An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water Res 100:245–266PubMedCrossRefPubMedCentralGoogle Scholar
  116. Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78(3):209–215PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ifra Zoomi
    • 1
  • Harbans Kaur Kehri
    • 1
  • Ovaid Akhtar
    • 2
  • Dheeraj Pandey
    • 1
  • Pragya Srivastava
    • 1
  • Raghvendra Pratap Narayan
    • 3
  1. 1.Sadasivan Myco-pathology Laboratory, Department of BotanyUniversity of AllahabadAllahabadIndia
  2. 2.Department of BotanyKamla Nehru Institute of Physical and Social SciencesSultanpurIndia
  3. 3.Netaji Subhash Chandra Bose Government Girls P.G. CollegeLucknowIndia

Personalised recommendations