Efficacy of Nano-phytochemicals Over Pure Phytochemicals Against Various Cancers: Current Trends and Future Prospects

  • Asif Jafri
  • Saima Amjad
  • Shabana Bano
  • Sudhir Kumar
  • M. Serajuddin
  • Md Arshad
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Cancer, known to be the most disastrous disease worldwide, accounts for about 7.6 million mortalities per year. Developing nations are facing more incidences of cancer and represent about 60% of the deaths. Researchers and scientists in the pharmaceutical industries are conducting extensive investigations to develop a definitive drug that can destroy tumors without affecting normal healthy cells. Phytochemicals possess significant anticancer potential, and their consumption is associated with the reduction of the progression of some cancers, but they have some limitations for being target-effective drugs, such as lower solubility, poor penetration power, restricted therapeutic potential, and ready absorption by normal cells. The impact of nanotechnology has significantly increased in various fields of science, especially the medical sciences, in the progress for target-specific drug release systems. Some promising nano-phytochemicals and nano-compounds, ensured by their significant cytotoxicity on various cancers, provide a novel approach in management and improvement of potent chemopreventive cancer drugs that are target specific to cancerous cells only. This chapter aims to summarize the anticancer properties of some potent phytochemicals, their mode of action, and some recent progress on nano-phytochemical-based nano-medicines and their effectiveness compared to the pure phytochemicals in the future treatment of various cancers.


Phytochemicals Nano-phytochemicals Cancer Pharmaceutical Nano-medicine 



The authors Asif Jafri and Md Arshad acknowledge the support of Uttar Pradesh Council of Science and Technology, Lucknow, India (File No. CST/SERPD/D-299). Asif Jafri is also grateful to the Council of Scientific and Industrial Research, India for the award of Senior Research Fellowship (File No. 09/107 (0393)/2018- EMR-I).


  1. Abdille MH, Singh RP, Jayaprakasha GK (2005) Antioxidant activity of the extracts from Dillenia indica fruits. Food Chem 90:891–896CrossRefGoogle Scholar
  2. Aguirre L, Arias N, Macarulla MT et al (2011) Beneficial effects of quercetin on obesity and diabetes. Open Nutraceuticals J 4:189–198CrossRefGoogle Scholar
  3. Ahamad MS, Siddiqui S, Jafri A et al (2014) Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. PLoS One 9:e110003PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ahmad MZ, Alkahtani SA, Akhter S et al (2016) Progress in nanotechnology-based drug carrier in designing of curcumin nanomedicines for cancer therapy: current state-of-the-art. J Drug Target 24:273–293PubMedCrossRefGoogle Scholar
  5. Ali BH, Blunden G (2003) Pharmacological and toxicological properties of Nigella sativa. Phytother Res 17:299–305PubMedCrossRefGoogle Scholar
  6. Amirsaadat S, Pilehvar-Soltanahmadi Y, Zarghami F et al (2017) Silibinin-loaded magnetic nanoparticles inhibit hTERT gene expression and proliferation of lung cancer cells. Artif Cells Nanomed Biotechnol 45:1649–1656PubMedCrossRefGoogle Scholar
  7. Avtanski DB, Nagalingam A, Kupusamy P et al (2013) Targeting epithelial-mesenchymal transition in breast cancer cells using Honokiol, a natural phenolic compound. Cancer Res 73:299Google Scholar
  8. Baishya R, Nayak DK, Kumar D et al (2016) Ursolic acid loaded PLGA nanoparticles: in vitro and in vivo evaluation to explore tumor targeting ability on B16F10 melanoma cell lines. Pharm Res 33:2691–2703PubMedCrossRefGoogle Scholar
  9. Bhadoriya SS, Mangal A, Madoriya N et al (2011) Bioavailability and bioactivity enhancement of herbal drugs by “Nanotechnology”: a review. J Curr Pharm Res 8:1–7Google Scholar
  10. Bhattacharya S, Ahir M, Patra P et al (2015) PEGylated-thymoquinone-nanoparticle mediated retardation of breast cancer cell migration by deregulation of cytoskeletal actin polymerization through miR-34a. Biomaterials 51:91–107PubMedCrossRefGoogle Scholar
  11. Blanco E, Bey EA, Dong Y et al (2007) β-Lapachone-containing PEG–PLA polymer micelles as novel nanotherapeutics against NQO1-overexpressing tumor cells. J Control Release 122:365–374PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chattopadhyay D, Arunachalam G, Mandal AB et al (2002) Antimicrobial and anti-inflammatory activity of folklore: Mallotus peltatus leaf extract. J Ethnopharmacol 82:229–237PubMedCrossRefGoogle Scholar
  13. Chen YJ (2002) Potential role of tetrandrine in cancer therapy. Acta Pharmacol Sin 23:1102–1106PubMedGoogle Scholar
  14. Cheng S, Welty M, Eliaz I et al (2014) Honokiol inhibits growth and migration of renal cell carcinoma. Cancer Res 74:3203Google Scholar
  15. Cheng Y, Zheng S, Teng Y et al (2016) Preparation of honokiol with biodegradable nanoparticles for treatment of osteosarcoma. RSC Adv 6:94278–94286CrossRefGoogle Scholar
  16. Chiang CK, Sheu ML, Hung KY et al (2006) Honokiol, a small molecular weight natural product, alleviates experimental mesangial proliferative glomerulonephritis. Kidney Int 70:682–689PubMedCrossRefGoogle Scholar
  17. Conaway CC, Getachun SM, Liebes LL et al (2001) Disposition of glucosinolates and sulphoraphanes in human after ingestion of steam and fresh broccoli. Nutr Cancer 38:168–178CrossRefGoogle Scholar
  18. Davis JM, Murphy EA, Carmichael MD (2009) Effects of the dietary flavonoid quercetin upon performance and health. Curr Sports Med Rep 8:206–213PubMedCrossRefGoogle Scholar
  19. Davis-Searles PR, Nakanishi Y, Kim NC et al (2005) Milk thistle and prostate cancer: differential effects of pure flavonolignans from Silybum marianum on antiproliferative end points in human prostate carcinoma cells. Cancer Res 65:4448–4457PubMedCrossRefGoogle Scholar
  20. Dehghani H, Hashemi M, Entezari M et al (2015) The comparison of anticancer activity of thymoquinone and nanothymoquinone on human breast adenocarcinoma. Iran J Pharm Res 14:539PubMedPubMedCentralGoogle Scholar
  21. Deng J, Qian Y, Geng L et al (2008) Involvement of p38 mitogen-activated protein kinase pathway in honokiol-induced apoptosis in a human hepatoma cell line (hepG2). Liver Int 28:1458–1464PubMedCrossRefGoogle Scholar
  22. Dinda AK, Prashant CK, Naqvi S et al (2012) Curcumin loaded organically modified silica (ORMOSIL) nanoparticle; a novel agent for cancer therapy. Int J Nanotechnol 9:862–871CrossRefGoogle Scholar
  23. Ebrahimnezhad Z, Zarghami N, Keyhani M et al (2013) Inhibition of hTERT gene expression by silibinin-loaded PLGA-PEG-Fe3O4 in T47D breast cancer cell line. Bioimpacts 3:67PubMedPubMedCentralGoogle Scholar
  24. Esfandiarpour-Boroujeni S, Bagheri-Khoulenjani S, Mirzadeh H et al (2017) Fabrication and study of curcumin loaded nanoparticles based on folate-chitosan for breast cancer therapy application. Carbohydr Polym 168:14–21PubMedCrossRefGoogle Scholar
  25. Fried LE, Arbiser JL (2009) Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid Redox Signal 11:1139–1148PubMedPubMedCentralCrossRefGoogle Scholar
  26. Gali-Muhtasib H, Roessner A, Schneider-Stock R (2006) Thymoquinone: a promising anti-cancer drug from natural sources. Int J Biochem Cell Biol 38:1249–1253PubMedCrossRefGoogle Scholar
  27. Ganea GM, Fakayode SO, Losso JN et al (2010) Delivery of phytochemical thymoquinone using molecular micelle modified poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles. Nanotechnology 21:285104PubMedCrossRefGoogle Scholar
  28. Gou M, Gong C, Zhang J et al (2010) Polymeric matrix for drug delivery: Honokiol-loaded PCL-PEG-PCL nanoparticles in PEG-PCL-PEG thermosensitive hydrogel. J Biomed Mater Res Part A 93:219–226Google Scholar
  29. Heiss AG, Oeggl K (2005) The oldest evidence of Nigella damascena L. (Ranunculaceae) and its possible introduction to central Europe. Veg Hist Archaeobot 14:562–570CrossRefGoogle Scholar
  30. Ishii T, Yasuda K, Akatsuka A (2005) A mutation in the SDHC gene of complex increases oxidative stress resulting in apoptosis and tumorigenesis. Cancer Res 65:203–209PubMedGoogle Scholar
  31. Jafri A, Siddiqui S, Deep A et al (2018) Induction of apoptosis by alpha-mangostin in human hepatocellular carcinoma cells via nuclear fragmentation and ROS dependent mitochondrial pathway. J Clin Exp Hepatol 8:S116CrossRefGoogle Scholar
  32. Jafri A, Siddiqui S, Rais J et al (2019) Induction of apoptosis by piperine in human cervical adenocarcinoma via ROS mediated mitochondrial pathway and caspase-3 activation. EXCLI J 18:154–164PubMedPubMedCentralGoogle Scholar
  33. Jang SM, Kim MJ, Choi MS et al (2010) Inhibitory effects of ursolic acid on hepatic polyol pathway and glucose production in streptozotocin-induced diabetic mice. Metabolism 59:512–519PubMedCrossRefPubMedCentralGoogle Scholar
  34. Jeong SY, Park SJ, Yoon SM et al (2009) Systemic delivery and preclinical evaluation of Au nanoparticle containing β-lapachone for radiosensitization. J Control Release 139:239–245PubMedCrossRefPubMedCentralGoogle Scholar
  35. Jiang K, Chi T, Li T et al (2017) A smart pH-responsive nano-carrier as a drug delivery system for the targeted delivery of ursolic acid: suppresses cancer growth and metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple signaling pathways. Nanoscale 9:9428–9439PubMedCrossRefPubMedCentralGoogle Scholar
  36. Jin H, Pi J, Yang F et al (2016) Folate-chitosan nanoparticles loaded with ursolic acid confer anti-breast cancer activities in vitro and in vivo. Sci Rep 6:30782PubMedPubMedCentralCrossRefGoogle Scholar
  37. Jin H, Pi J, Zhao Y et al (2017) EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale 9:16365–16374PubMedCrossRefPubMedCentralGoogle Scholar
  38. Joe B, Vijaykumar M, Lokesh BR (2004) Biological properties of curcumin cellular and molecular mechanisms of action. Crit Rev Food Sci Nutr 44:97–111PubMedCrossRefPubMedCentralGoogle Scholar
  39. Kashyap D, Mondal R, Tuli HS et al (2016) Molecular targets of gambogic acid in cancer: recent trends and advancements. Tumor Biol 37:12915–12925CrossRefGoogle Scholar
  40. Kaushik U, Aeri V, Mir SR (2015) Cucurbitacins – an insight into medicinal leads from nature. Pharmacogn Rev 9:12–18PubMedPubMedCentralCrossRefGoogle Scholar
  41. Khan F, Niaz K, Maqbool F et al (2016) Molecular targets underlying the anticancer effects of quercetin: an update. Nutrients 8:529PubMedCentralCrossRefPubMedGoogle Scholar
  42. Khoobchandani M, Zambre A, Katti K et al (2013) Green nanotechnology from Brassicaceae: development of broccoli phytochemicals-encapsulated gold nanoparticles and their applications in nanomedicine. Int J Green Nanotechnol 5(1):1–15Google Scholar
  43. Kim BH, Cho JY (2008) Anti-inflammatory effect of honokiol is mediated by PI3K/Akt pathway suppression 1. Acta Pharmacol Sin 29:113–122PubMedCrossRefGoogle Scholar
  44. Kim SH, Choi KC (2013) Anti-cancer effect and underlying mechanism(s) of kaempferol, a phytoestrogen, on the regulation of apoptosis in diverse cancer cell models. Toxicol Res 29:229–234PubMedPubMedCentralCrossRefGoogle Scholar
  45. Kumar N, Pruthi V (2014) Potential applications of ferulic acid from natural sources. Biotechnol Rep 4:86–93CrossRefGoogle Scholar
  46. Kung HN, Lu KS, Chau YP (2014) The chemotherapeutic effects of lapacho tree extract: β-lapachone. Chemotherapy 3:1–5CrossRefGoogle Scholar
  47. Li Z, Liu Y, Zhao X et al (2008) Honokiol, a natural therapeutic candidate, induces apoptosis and inhibits angiogenesis of ovarian tumor cells. Eur J Obstet Gynecol Reprod Biol 140:95–102PubMedCrossRefGoogle Scholar
  48. Li QS, Li CY, Li ZL et al (2012) Genistein and its synthetic analogs as anticancer agents. Anti-Cancer Agents Med Chem 12:271–281CrossRefGoogle Scholar
  49. Liang Z, Yang Y, Wang H et al (2014) Inhibition of SIRT1 signaling sensitizes the antitumor activity of silybin against human lung adenocarcinoma cells in vitro and in vivo. Mol Cancer Ther 13:1860–1872PubMedCrossRefGoogle Scholar
  50. Lin Y, Shi R, Wang X et al (2008) Luteolin, a flavonoid with potentials for cancer prevention and therapy. Curr Cancer Drug Targets 8:634–646PubMedPubMedCentralCrossRefGoogle Scholar
  51. Mahn A, Reyes A (2011) An overview of health-promoting compounds of broccoli (Brassica oleracea var. italica) and the effect of processing. Food Sci Tech Int 18:503–514CrossRefGoogle Scholar
  52. Mateen S, Tyagi A, Agarwal C et al (2010) Silibinin inhibits human nonsmall cell lung cancer cell growth through cell-cycle arrest by modulating expression and function of key cell-cycle regulators. Mol Carcinog 49:247–258PubMedPubMedCentralGoogle Scholar
  53. Merlin JJ, Prasad NR, Shibli SM (2012) Ferulic acid loaded poly-d,l-lactide-co-glycolide nanoparticles: systematic study of particle size, drug encapsulation efficiency and anticancer effect in non-small cell lung carcinoma cell line in vitro. Biomed Prev Nutr 2:69–76CrossRefGoogle Scholar
  54. Moudi M, Go R, Yien CYS et al (2013) Vinca alkaloids. Int J Prev Med 4:1231–1235PubMedPubMedCentralGoogle Scholar
  55. Nejati-Koshki K, Zarghami N, Pourhassan-Moghaddam M et al (2012) Inhibition of leptin gene expression and secretion by silibinin: possible role of estrogen receptors. Cytotechnology 64:719–726PubMedPubMedCentralCrossRefGoogle Scholar
  56. Nishiyama N (2007) Nanomedicine: nanocarriers shape up for long life. Nat Nanotechnol 2:203–204PubMedCrossRefGoogle Scholar
  57. Orlikova B, Tasdemir D, Golais F et al (2011) Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr 6:125–147PubMedPubMedCentralCrossRefGoogle Scholar
  58. Pardee AB, Li Y, Li CJ (2002) Cancer therapy with β-lapachone. Curr Cancer Drug Targets 2:227–242PubMedCrossRefGoogle Scholar
  59. Park C, Lee WS, Go SI et al (2015) Morin, a flavonoid from Moraceae, induces apoptosis by induction of BAD protein in human leukemic cells. Int J Mol Sci 16:645–659CrossRefGoogle Scholar
  60. Prasad S, Yadav VR, Kannappan R et al (2011) Ursolic acid, a pentacyclin triterpene, potentiates TRAIL-induced apoptosis through p53-independent up-regulation of death receptors evidence for the role of reactive oxygen species and JNK. J Biol Chem 286:5546–5557PubMedCrossRefGoogle Scholar
  61. Qazi A, Pal J, Maitah MI et al (2010) Anticancer activity of a broccoli derivative, sulforaphane, in Barrett adenocarcinoma: potential use in chemoprevention and as adjuvant in chemotherapy. Transl Oncol 3:389–399PubMedPubMedCentralCrossRefGoogle Scholar
  62. Rahman HS, Rasedee A, Yeap SK et al (2014) Biomedical properties of a natural dietary plant metabolite, zerumbone, in cancer therapy and chemoprevention trials. Biomed Res Int 2014:920742PubMedPubMedCentralGoogle Scholar
  63. Rawson NE, Ho CT, Li S (2014) Efficacious anti-cancer property of flavonoids from citrus peels. Food Sci Human Wellness 3:104–109CrossRefGoogle Scholar
  64. Ren KW, Li YH, Wu G et al (2017) Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int J Oncol 50:1299–1311PubMedCrossRefGoogle Scholar
  65. Roohbakhsh A, Parhiz H, Soltani F et al (2015) Molecular mechanisms behind the biological effects of hesperidin and hesperetin for the prevention of cancer and cardiovascular diseases. Life Sci 124:64–74PubMedCrossRefGoogle Scholar
  66. Shanmugam MK, Rajendran P, Li F et al (2011) Ursolic acid inhibits multiple cell survival pathways leading to suppression of growth of prostate cancer xenograft in nude mice. J Mol Med 89:713–727PubMedCrossRefGoogle Scholar
  67. Shanmugam MK, Dai X, Kumar AP et al (2013) Ursolic acid in cancer prevention and treatment: molecular targets, pharmacokinetics and clinical studies. Biochem Pharmacol 85:1579–1587PubMedCrossRefGoogle Scholar
  68. Shukla S, Gupta S (2010) Apigenin: a promising molecule for cancer prevention. Pharm Res 27:962–978PubMedPubMedCentralCrossRefGoogle Scholar
  69. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. CA Cancer J Clin 67:7–30CrossRefPubMedGoogle Scholar
  70. Singh RP, Deep G, Chittezhath M et al (2006) Effect of silibinin on the growth and progression of primary lung tumors in mice. J Natl Cancer Inst 98:846–855PubMedCrossRefGoogle Scholar
  71. Singh BN, Shankar S, Srivastava RK (2011) Green tea catechin, epigallocatechin-3-gallate (EGCG): mechanisms, perspectives and clinical applications. Biochem Pharmacol 82:1807–1821PubMedPubMedCentralCrossRefGoogle Scholar
  72. Srinivasan M, Sudheer AR, Menon VP (2007) Ferulic acid: therapeutic potential through its antioxidant property. J Clin Biochem Nutr 40:92–100PubMedPubMedCentralCrossRefGoogle Scholar
  73. Steinmann P, Walters DK, Arlt MJ et al (2012) Antimetastatic activity of honokiol in osteosarcoma. Cancer 118:2117–2127PubMedCrossRefGoogle Scholar
  74. Steinmetz KA, Potter JD (1991a) Vegetables, fruit, and cancer. I. Epidemiology. Cancer Causes Control 2:325–357PubMedCrossRefGoogle Scholar
  75. Steinmetz KA, Potter JD (1991b) Vegetables, fruit, and cancer. II. Mechanisms. Cancer Causes Control 2:427–442PubMedCrossRefGoogle Scholar
  76. Subramaniam D, Ponnurangam S, Kwatra D et al (2015) Honokiol prevents colonic tumorigenesis and affects stem cell viability by affecting oncogenic YAP1 function. Cancer Res 75:1893Google Scholar
  77. Subramanian AP, Jaganathan SK, Manikandan A et al (2016) Recent trends in nano-based drug delivery systems for efficient delivery of phytochemicals in chemotherapy. RSC Adv 6:48294–48314CrossRefGoogle Scholar
  78. Surai PF (2015) Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants 4:204–247PubMedPubMedCentralCrossRefGoogle Scholar
  79. Syaefudin JA, Rosiyana L, Setyani A et al (2016) Nanoparticles of Selaginella doederleinii leaf extract inhibit human lung cancer cells A549. Earth Environ Sci 31:1–5Google Scholar
  80. Tan W, Li Y, Chen M et al (2011) Berberine hydrochloride: anticancer activity and nanoparticulate delivery system. Int J Nanomedicine 6:1773–1777PubMedPubMedCentralCrossRefGoogle Scholar
  81. Tang L, Zhang Y, Jobson EH et al (2006) Potent activation of mitochondria-mediated apoptosis and arrest in S and M phases of cancer cells by a broccoli sprout extract. Mol Cancer Ther 5:935–944PubMedCrossRefGoogle Scholar
  82. Tannock LR (2011) Ursolic acid effect on atherosclerosis: apples and apples, or apples and oranges? Atherosclerosis 219:397–398PubMedCrossRefGoogle Scholar
  83. Ting H, Deep G, Agarwal R (2013) Molecular mechanisms of silibinin-mediated cancer chemoprevention with major emphasis on prostate cancer. AAPS J 15:707–716PubMedPubMedCentralCrossRefGoogle Scholar
  84. Tozer GM, Kanthou C, Parkins CS et al (2002) The biology of the combretastatins as tumour vascular targeting agents. Int J Exp Pathol 83:21–38PubMedPubMedCentralCrossRefGoogle Scholar
  85. Varoni EM, Faro AFL, Sharifi-Rad J et al (2016) Anticancer molecular mechanisms of resveratrol. Front Nutr 3:1–15CrossRefGoogle Scholar
  86. Wang G, Yao S, Cheng L et al (2015) Antioxidant and anticancer effection of the volatile oil from various habitats of Selaginella doederleinii Hieron. Technol Health Care 23:S21–S27PubMedCrossRefGoogle Scholar
  87. Wei WT, Lin SZ, Liu DL et al (2013) The distinct mechanisms of the antitumor activity of emodin in different types of cancer. Oncol Rep 30:2555–2562PubMedCrossRefGoogle Scholar
  88. Woo CC, Kumar AP, Sethi G et al (2012) Thymoquinone: potential cure for inflammatory disorders and cancer. Biochem Pharmacol 83:443–451PubMedCrossRefGoogle Scholar
  89. Xu P, Yin Q, Shen J et al (2013) Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS. Int J Pharm 454:21–30PubMedCrossRefGoogle Scholar
  90. Yallapu MM, Othman SF, Curtis ET, Bauer NA, Chauhan N, Kumar D, Jaggi M, Chauhan SC (2012) Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int J Nanomedicine 7:1761PubMedPubMedCentralGoogle Scholar
  91. Yallapu MM, Khan S, Maher DM et al (2014) Anti-cancer activity of curcumin loaded nanoparticles in prostate cancer. Biomaterials 35:8635–8648PubMedPubMedCentralCrossRefGoogle Scholar
  92. Yin H, Zhang H, Liu B (2013) Superior anticancer efficacy of curcumin-loaded nanoparticles against lung cancer. Acta Biochim Biophys Sin 45:634–640PubMedCrossRefGoogle Scholar
  93. Yuan Z, Liu H, Yan F et al (2009) Improved therapeutic efficacy against murine carcinoma by combining honokiol with gene therapy of PNAS-4, a novel pro-apoptotic gene. Cancer Sci 100:1757–1766PubMedCrossRefGoogle Scholar
  94. Zaman MS, Chauhan N, Yallapu MM et al (2016) Curcumin nanoformulation for cervical cancer treatment. Sci Rep 6:20051PubMedPubMedCentralCrossRefGoogle Scholar
  95. Zhang HM, Zhao L, Li H et al (2014) Research progress on the anticarcinogenic actions and mechanisms of ellagic acid. Cancer Biol Med 11:92–100PubMedPubMedCentralGoogle Scholar
  96. Zhao Z, Moghadasian MH (2008) Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem 109:691–702PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Asif Jafri
    • 1
  • Saima Amjad
    • 2
  • Shabana Bano
    • 2
  • Sudhir Kumar
    • 2
  • M. Serajuddin
    • 2
  • Md Arshad
    • 1
  1. 1.Molecular Endocrinology Lab, Department of ZoologyUniversity of LucknowLucknowIndia
  2. 2.Department of ZoologyUniversity of LucknowLucknowIndia

Personalised recommendations