Appraisal of Chitosan-Based Nanomaterials in Enzyme Immobilization and Probiotics Encapsulation

  • Subham Rakshit
  • Suman Kumar HalderEmail author
  • Keshab Chandra Mondal
Part of the Nanotechnology in the Life Sciences book series (NALIS)


Chitosan is an amino-polysaccharide made of glucosamine and N-acetyl-D-glucosamine. Owing to its biocompatible, biodegradable, and nontoxic nature, chitosan is considered as biomaterial, and these unique properties attested that chitosan has greater potential for biological applications. As cationic molecule, chitosan interacts with negatively charged gastrointestinal (GI) mucosal surface and hence is considered as potent mucoadhesive. Therefore chitosan-based encapsulation techniques provide better viability of probiotic microorganisms and protecting the latter in food products and at GI tract. In recent eons, chitosan or chitosan-based nanocomposites are considered as an attractive supportive matrix for enzyme immobilization because of the presence of reactive groups like amino and hydroxyl which supports long-term reusability of the immobilized biocatalyst. The current assignment highlights the recent research and cutting-edge strategies regarding chitosan-based nanomaterials in the field of probiotics encapsulation and enzyme immobilization.


Nanomaterials Chitosan Probiotics Enzyme immobilization Encapsulation 


  1. Alver E, Metin AÜ (2017) Chitosan based metal-chelated copolymer nanoparticles: Laccase immobilization and phenol degradation studies. Int Biodeterior Biodegrad 125:235–242CrossRefGoogle Scholar
  2. Amirbandeh M, Taheri-Kafrani A, Soozanipour A et al (2017) Triazine-functionalized chitosan-encapsulated superparamagnetic nanoparticles as reusable and robust nanocarrier for glucoamylase immobilization. Biochem Eng J 127:119–127CrossRefGoogle Scholar
  3. Ansari F, Pourjafar H, Jodat V et al (2017) Effect of Eudragit S100 nanoparticles and alginate chitosan encapsulation on the viability of Lactobacillus acidophilus and Lactobacillus rhamnosus. AMB Express 7(1):144PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ashly PC, Joseph MJ, Mohanan PV (2011) Activity of diastase α-amylase immobilized on polyanilines (PANIs). Food Chem 127(4):1808–1813CrossRefGoogle Scholar
  5. Avadi MR, Sadeghi AM, Mohammadpour N et al (2010) Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine 6(1):58–63PubMedCrossRefPubMedCentralGoogle Scholar
  6. Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54(1):207–233PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bindu VU, Mohanan PV (2017) Enhanced stability of α-amylase via immobilization onto chitosan-TiO2 nanocomposite. Nanosci Technol 4(2):1–9Google Scholar
  8. Bouskra D, Brézillon C, Bérard M et al (2008) Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456(7221):507PubMedCrossRefPubMedCentralGoogle Scholar
  9. Brunel F, Véron L, David L et al (2008) A novel synthesis of chitosan nanoparticles in reverse emulsion. Langmuir 24(20):11370–11377PubMedCrossRefPubMedCentralGoogle Scholar
  10. Burgain J, Gaiani C, Linder M et al (2011) Encapsulation of probiotic living cells: from laboratory scale to industrial applications. J Food Eng 104(4):467–483CrossRefGoogle Scholar
  11. Cao M, Li Z, Wang J (2012) Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization, protein purification, and food analysis. Trends Food Sci Technol 27(1):47–56CrossRefGoogle Scholar
  12. Champagne CP, Fustier P (2007) Microencapsulation for the improved delivery of bioactive compounds into foods. Curr Opinion Biotechnol 18(2):184–190CrossRefGoogle Scholar
  13. Chandramouli V, Kailasapathy K, Peiris P et al (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods 56(1):27–35PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chen XG, Liu CS, Liu CG et al (2006) Preparation and biocompatibility of chitosan microcarriers as biomaterial. Biochem Eng J 27(3):269–274CrossRefGoogle Scholar
  15. Chen GC, Kuan IC, Hong JR et al (2011) Activity enhancement and stabilization of lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica. Biotechnol Lett 33(3):525–529PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chen SC, Sheu DC, Duan KJ (2014) Production of fructooligosaccharides using β-fructofuranosidase immobilized onto chitosan-coated magnetic nanoparticles. J Taiwan Inst Chem Eng 45(4):1105–1110CrossRefGoogle Scholar
  17. Choi YJ, Kim EJ, Piao Z et al (2004) Purification and characterization of chitosanase from Bacillus sp. strain KCTC 0377BP and its application for the production of chitosan oligosaccharides. Appl Environ Microbiol 70(8):4522–4531PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cirillo G, Nicoletta FP, Curcio M et al (2014) Enzyme immobilization on smart polymers: catalysis on demand. React Funct Polym 83:62–69CrossRefGoogle Scholar
  19. Cook MT, Tzortzis G, Charalampopoulos D et al (2011) Production and evaluation of dry alginate-chitosan microcapsules as an enteric delivery vehicle for probiotic bacteria. Biomacromolecules 12:2834–2840PubMedCrossRefPubMedCentralGoogle Scholar
  20. Coradin T, Nassif N, Livage J (2003) Silica–alginate composites for microencapsulation. Appl Microbiol Biotechnol 61(5–6):429–434PubMedCrossRefPubMedCentralGoogle Scholar
  21. Daoud FB, Kaddour S, Sadoun T (2010) Adsorption of cellulase Aspergillus niger on a commercial activated carbon: kinetics and equilibrium studies. Colloid Surf B Biointerfaces 75(1):93–99PubMedCrossRefPubMedCentralGoogle Scholar
  22. de Moura MR, Aouada FA, Mattoso LH (2008) Preparation of chitosan nanoparticles using methacrylic acid. J Colloid Interface Sci 321(2):477–483PubMedCrossRefPubMedCentralGoogle Scholar
  23. de Vos P, Faas MM, Spasojevic M et al (2010) Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int Dairy J 20(4):292–302CrossRefGoogle Scholar
  24. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237CrossRefGoogle Scholar
  25. Delattre C, Fenoradosoa TA, Michaud P (2011) Galactans: an overview of their most important sourcing and applications as natural polysaccharides. Braz Arch Biol Technol 54(6):1075–1092CrossRefGoogle Scholar
  26. Demirkan E, Avci T, Aykut Y (2018) Protease immobilization on cellulose monoacetate/chitosan-blended nanofibers. J Ind Tex 47(8):2092–2111CrossRefGoogle Scholar
  27. Devnani H, Bahadur A (2017) Variation in activity of lipase immobilized on chitosan and alginate nanoparticles by changing concentration of the preparatory reagents. Res Rev: J Life Sci 7(3):14–22Google Scholar
  28. Ebrahimnejad P, Khavarpour M, Khalili S (2017) Survival of Lactobacillus acidophilus as probiotic Bacteria using chitosan nanoparticles. Int J Eng Trans A: Basics 304:456–463Google Scholar
  29. Eratte D, McKnight S, Gengenbach TR et al (2015) Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate–gum Arabic complex coacervates. J Funct Foods 19:882–892CrossRefGoogle Scholar
  30. Fang H, Huang J, Ding L et al (2009) Preparation of magnetic chitosan nanoparticles and immobilization of laccase. J Wuhan Univ Technol-Mater Sci Ed 24(1):42–47CrossRefGoogle Scholar
  31. Ferrario V, Ebert C, Knapic L et al (2011) Conformational changes of lipases in aqueous media: a comparative computational study and experimental implications. Adv Syn Cat 353(13):2466–2480CrossRefGoogle Scholar
  32. Foresti ML, Valle G, Bonetto R et al (2010) FTIR, SEM and fractal dimension characterization of lipase B from Candida antarctica immobilized onto titania at selected conditions. Appl Surface Sci 256(6):1624–1635CrossRefGoogle Scholar
  33. Gandomi H, Abbaszadeh S, Misaghi A et al (2016) Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT-Food Sci Technol 69:365–371CrossRefGoogle Scholar
  34. Ghadi A, Tabandeh F, Mahjoub S et al (2015) Fabrication and characterization of core-shell magnetic chitosan nanoparticles as a novel carrier for immobilization of Burkholderia cepacia lipase. J Oleo Sci 64(4):423–430PubMedCrossRefPubMedCentralGoogle Scholar
  35. Gooday GW, Aruchami M, Gowri N et al (1986) Chitin deacetylases in invertebrates. In chitin in nature and technology. Springer, BostonGoogle Scholar
  36. Gordon S (2008) Elie Metchnikoff: father of natural immunity. Eur J Immunol 38(12):3257–3264PubMedCrossRefPubMedCentralGoogle Scholar
  37. Gregorio-Jauregui KM, Pineda MG, Rivera-Salinas JE et al (2012) One-step method for preparation of magnetic nanoparticles coated with chitosan. J Nanomater 2012:4CrossRefGoogle Scholar
  38. Halder SK, Mondal KC (2018) Microbial valorization of chitinous bioresources for chitin extraction and production of chito-oligomers and N-acetylglucosamine: trends, perspectives and prospects. In: Microbial biotechnology. Springer, Singapore, pp 69–107CrossRefGoogle Scholar
  39. Heidebach T, Först P, Kulozik U (2012) Microencapsulation of probiotic cells for food applications. Crit Rev Food Sci Nutr 52(4):291–311PubMedCrossRefPubMedCentralGoogle Scholar
  40. Hoffmann DE, Fraser CM, Palumbo FB et al (2013) Probiotics: finding the right regulatory balance. Science 342(6156):314–315PubMedPubMedCentralCrossRefGoogle Scholar
  41. Homaei AA, Sariri R, Vianello F et al (2013) Enzyme immobilization: an update. J Chem Biol 6(4):185–205PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hong YS, Hong KS, Park MH et al (2011) Metabonomic understanding of probiotic effects in humans with irritable bowel syndrome. J Clin Gastroenterol 45(5):415–425PubMedCrossRefPubMedCentralGoogle Scholar
  43. Horchani H, Aissa I, Ouertani S et al (2012) Staphylococcal lipases: biotechnological applications. J Mol Catal B: Enzym 76:125–132CrossRefGoogle Scholar
  44. Hwang ET, Gu MB (2013) Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci 1:49–61CrossRefGoogle Scholar
  45. Janssen MH, van Langen LM, Pereira SR et al (2002) Evaluation of the performance of immobilized penicillin G acylase using active-site titration. Biotechnol Bioeng 78(4):425–432PubMedCrossRefPubMedCentralGoogle Scholar
  46. Jia H, Zhu G, Wang P (2003) Catalytic behaviors of enzymes attached to nanoparticles: the effect of particle mobility. Biotechnol Bioeng 84(4):406–414PubMedCrossRefPubMedCentralGoogle Scholar
  47. Johansson ME, Larsson JM, Hansson GC (2011) The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc Natl Acad Sci U S A 108(Supplement 1):4659–4665PubMedCrossRefPubMedCentralGoogle Scholar
  48. Ju HY, Kuo CH, Too JR et al (2012) Optimal covalent immobilization of α-chymotrypsin on Fe3O4-chitosan nanoparticles. J Mol Catal B: Enzym 78:9–15CrossRefGoogle Scholar
  49. Kalkan NA, Aksoy S, Aksoy EA et al (2012) Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J Appl Pol Sci 123(2):707–716CrossRefGoogle Scholar
  50. Kang X, Mai Z, Zou X et al (2007) A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold–platinum alloy nanoparticles/multiwall carbon nanotubes. Anal Biochem 369(1):71–79PubMedCrossRefPubMedCentralGoogle Scholar
  51. Katchalski-Katzir E, Kraemer DM (2000) Eupergit® C, a carrier for immobilization of enzymes of industrial potential. J Mol Catal B Enzym 10(1–3):157–76CrossRefGoogle Scholar
  52. Kim JU, Kim B, Shahbaz HM et al (2017) Encapsulation of probiotic Lactobacillus acidophilus by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage. Int J Food Sci Technol 52(2):519–530CrossRefGoogle Scholar
  53. Kirk O, Christensen MW (2002) Lipases from Candida antarctica: unique biocatalysts from a unique origin. Org Process Res Dev 6(4):446–451CrossRefGoogle Scholar
  54. Klein MP, Nunes MR, Rodrigues RC et al (2012) Effect of the support size on the properties of β-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles. Biomacromolecules 13(8):2456–2464PubMedCrossRefPubMedCentralGoogle Scholar
  55. Klotzbach T, Watt M, Ansari Y et al (2006) Effects of hydrophobic modification of chitosan and Nafion on transport properties, ion-exchange capacities, and enzyme immobilization. J Membr Sci 282(1–2):276–283CrossRefGoogle Scholar
  56. Krajewska B (2004) Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzym Microb Technol 35(2–3):126–139CrossRefGoogle Scholar
  57. Krajewska B (2005) Membrane-based processes performed with use of chitin/chitosan materials. Sep Purif Technol 41(3):305–312CrossRefGoogle Scholar
  58. Križnik L, Vasić K, Knez Ž et al (2018) Hyper-activation of ß-galactosidase from Aspergillus oryzae via immobilization onto amino-silane and chitosan magnetic maghemite nanoparticles. J Clean Prod 179:225–234CrossRefGoogle Scholar
  59. Kumar S, Jana AK, Dhamija I et al (2014) Chitosan-assisted immobilization of serratiopeptidase on magnetic nanoparticles, characterization and its target delivery. J Drug Target 22(2):123–137PubMedCrossRefPubMedCentralGoogle Scholar
  60. Kuo CH, Liu YC, Chang CM et al (2012) Optimum conditions for lipase immobilization on chitosan-coated Fe3O4 nanoparticles. Carbohydr Polym 87(4):2538–2545CrossRefGoogle Scholar
  61. Li GY, Huang KL, Jiang YR et al (2008) Preparation and characterization of Saccharomyces cerevisiae alcohol dehydrogenase immobilized on magnetic nanoparticles. Int J Biol Macromol 42(5):405–412PubMedCrossRefPubMedCentralGoogle Scholar
  62. Li XY, Chen XG, Sun ZW et al (2011) Preparation of alginate/chitosan/ carboxymethyl chitosan complex microcapsules and application in Lactobacillus casei ATCC 393. Carbohydr Polym 83:1479–1485CrossRefGoogle Scholar
  63. Li R, Fu G, Liu C (2018) Tannase immobilisation by amino-functionalised magnetic Fe3O4-chitosan nanoparticles and its application in tea infusion. Int J Biol Macromol 114:1134–1143PubMedCrossRefPubMedCentralGoogle Scholar
  64. Lin Y, Liu X, Xing Z et al (2017) Preparation and characterization of magnetic Fe3O4–chitosan nanoparticles for cellulase immobilization. Cellulose 24(12):5541–5550CrossRefGoogle Scholar
  65. Ling XM, Wang XY, Ma P et al (2016) Covalent immobilization of penicillin G acylase onto Fe3O4@ chitosan magnetic nanoparticles. J Microbiol Biotechnol 26(5):829–836PubMedCrossRefPubMedCentralGoogle Scholar
  66. Liu Y, Jia S, Wu Q et al (2011) Studies of Fe3O4-chitosan nanoparticles prepared by co-precipitation under the magnetic field for lipase immobilization. Cat Com 12(8):717–720CrossRefGoogle Scholar
  67. Liu X, Chen X, Li Y et al (2012) Preparation of superparamagnetic Fe3O4@ alginate/chitosan nanospheres for Candida rugosa lipase immobilization and utilization of layer-by-layer assembly to enhance the stability of immobilized lipase. ACS Appl Mater Interfaces 4(10):5169–5178PubMedCrossRefPubMedCentralGoogle Scholar
  68. Liu MQ, Huo WK, Xu X et al (2015) An immobilized bifunctional xylanase on carbon-coated chitosan nanoparticles with a potential application in xylan-rich biomass bioconversion. J Mol Cat B: Enzym 120:119–126CrossRefGoogle Scholar
  69. Liu DM, Chen J, Shi YP (2017) α-Glucosidase immobilization on chitosan-enriched magnetic composites for enzyme inhibitors screening. Int J Biol Macromol 105:308–316PubMedCrossRefPubMedCentralGoogle Scholar
  70. Long J, Li X, Zhan X et al (2017) Sol–gel encapsulation of pullulanase in the presence of hybrid magnetic (Fe3O4–chitosan) nanoparticles improves thermal and operational stability. Bioprocess Biosyst Eng 40(6):821–831PubMedCrossRefPubMedCentralGoogle Scholar
  71. Lozinsky VI, Galaev IY, Plieva FM et al (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21(10):445–451PubMedCrossRefPubMedCentralGoogle Scholar
  72. Luo XL, Xu JJ, Zhang Q et al (2005) Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosens Bioelectron 21(1):190–196PubMedCrossRefPubMedCentralGoogle Scholar
  73. Mawad A, Helmy YA, Shalkami AG et al (2018) E. coli Nissle microencapsulation in alginate-chitosan nanoparticles and its effect on Campylobacter jejuniin vitro. Appl Microbiol Biotechnol 9:1–6Google Scholar
  74. Mbouguen JK, Ngameni E, Walcarius A (2006) Organoclay-enzyme film electrodes. Anal Chim Acta 578(2):145–155PubMedCrossRefPubMedCentralGoogle Scholar
  75. Mitchell S, Pérez-Ramírez J (2011) Mesoporous zeolites as enzyme carriers: synthesis, characterization, and application in biocatalysis. Catal Today. 2011 168(1):28–37CrossRefGoogle Scholar
  76. Nagpal K, Singh SK, Mishra DN (2010) Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull (Tokyo) 58(11):1423–1430CrossRefGoogle Scholar
  77. Narwal SK, Saun NK, Gupta R (2014) Characterization and catalytic properties of free and silica-bound lipase: a comparative study. J Oleo Sci 63(6):599–605PubMedCrossRefPubMedCentralGoogle Scholar
  78. Nasti A, Zaki NM, de Leonardis P et al (2009) Chitosan/TPP and chitosan/TPP-hyaluronic acid nanoparticles: systematic optimisation of the preparative process and preliminary biological evaluation. Pharm Res 26(8):1918–1930PubMedCrossRefPubMedCentralGoogle Scholar
  79. Onay A, Dogan Ü, Ciftci H et al (2018) Amperometric glucose sensor based on the glucose oxidase enzyme immobilized on graphite rod electrode modified with Fe3O4-CS-Au magnetic nanoparticles. Ionics 2018:1–8Google Scholar
  80. Pal SL, Jana U, Manna PK et al (2011) Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 1(6):228–234Google Scholar
  81. Pan C, Hu B, Li W et al (2009) Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. J Mol Catal B: Enzym 61(3–4):208–215CrossRefGoogle Scholar
  82. Pandey N, Bhatt R (2018) Improved biotransformation of arsenic by arsenite oxidase–chitosan nanoparticle conjugates. Int J Biol Macromol 106:258–265PubMedCrossRefPubMedCentralGoogle Scholar
  83. Patel SR, Yap MG, Wang DI (2009) Immobilization of l-lactate dehydrogenase on magnetic nanoclusters for chiral synthesis of pharmaceutical compounds. Biochem Eng J 48(1):13–21CrossRefGoogle Scholar
  84. Prakash S, Tomaro-Duchesneau C, Saha S et al (2011) The gut microbiota and human health with an emphasis on the use of microencapsulated bacterial cells. Biomed Res Int 2:2011Google Scholar
  85. Quevrain E, Maubert MA, Michon C et al (2016) Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut 65(3):415–425PubMedCrossRefPubMedCentralGoogle Scholar
  86. Rahman IN, Attan N, Mahat NA et al (2018) Statistical optimization and operational stability of Rhizomucor miehei lipase supported on magnetic chitosan/chitin nanoparticles for synthesis of pentyl valerate. Int J Biol Macromol 115:680–695PubMedCrossRefPubMedCentralGoogle Scholar
  87. Ramos PE, Cerqueira MA, Teixeira JA et al (2018) Physiological protection of probiotic microcapsules by coatings. Crit Rev Food Sci Nutr 58(11):1864–1877PubMedCrossRefPubMedCentralGoogle Scholar
  88. Rani AS, Das ML, Satyanarayana S (2000) Preparation and characterization of amyloglucosidase adsorbed on activated charcoal. J Mol Cat B: Enzym 10(5):471–476CrossRefGoogle Scholar
  89. Reshmi R, Sanjay G, Sugunan S (2007) Immobilization of α-amylase on zirconia: a heterogeneous biocatalyst for starch hydrolysis. Catal Commun 8(3):393–399CrossRefGoogle Scholar
  90. Rodrigues NF, Neto SY, Luz RD et al (2018) Ultrasensitive determination of malathion using acetylcholinesterase immobilized on chitosan-functionalized magnetic iron nanoparticles. Biosensors 8(1):16PubMedCentralCrossRefGoogle Scholar
  91. Rokka S, Rantamäki P (2010) Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Euro Food Res Technol 231(1):1–2CrossRefGoogle Scholar
  92. Roy JJ, Emilia Abraham T (2004) Strategies in making cross-linked enzyme crystals. Chem Rev 104(9):3705–3722CrossRefGoogle Scholar
  93. Roy JJ, Abraham TE, Abhijith KS et al (2005) Biosensor for the determination of phenols based on cross-linked enzyme crystals (CLEC) of laccase. Biosens Bioelectron 21(1):206–211PubMedCrossRefPubMedCentralGoogle Scholar
  94. Sadighi A, Faramarzi MA (2013) Congo red decolorization by immobilized laccase through chitosan nanoparticles on the glass beads. J Taiwan Ins Chem Eng 44(2):156–162CrossRefGoogle Scholar
  95. Salemi Z (2010) Tailor-made enzyme carriers: preparation and use of adsorbents specifically designed to immobilize allosteric enzymes in activated conformation. Am J Biochem Biotechnol 6:111–115CrossRefGoogle Scholar
  96. Sánchez-Ramírez J, Martínez-Hernández JL, Segura-Ceniceros P et al (2017) Cellulases immobilization on chitosan-coated magnetic nanoparticles: application for Agave Atrovirens lignocellulosic biomass hydrolysis. Bioprocess Biosyst Eng 40(1):9–22PubMedCrossRefPubMedCentralGoogle Scholar
  97. Sheldon RA (2007) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349(8–9):1289–1307CrossRefGoogle Scholar
  98. Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92(3):467–477PubMedPubMedCentralCrossRefGoogle Scholar
  99. Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42(15):6223–6235PubMedCrossRefPubMedCentralGoogle Scholar
  100. Sheldon RA, Schoevaart R, Van Langen LM (2005) Cross-linked enzyme aggregates (CLEAs): a novel and versatile method for enzyme immobilization (a review). Biocatal Biotransform 23(3–4):141–147CrossRefGoogle Scholar
  101. Shen Q, Yang R, Hua X et al (2011) Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochem 46(8):1565–1571CrossRefGoogle Scholar
  102. Shojaei F, Homaei A, Taherizadeh MR et al (2017) Characterization of biosynthesized chitosan nanoparticles from Penaeus vannamei for the immobilization of P. vannamei protease: an eco-friendly nanobiocatalyst. Int J Food Prop 20(sup2):1413–1423Google Scholar
  103. Shori AB (2017) Microencapsulation improved probiotics survival during gastric transit. HAYATI J Biosc 24(1):1–5CrossRefGoogle Scholar
  104. Sojitra UV, Nadar SS, Rathod VK (2017) Immobilization of pectinase onto chitosan magnetic nanoparticles by macromolecular cross-linker. Carbohydr Polym 157:677–685PubMedCrossRefPubMedCentralGoogle Scholar
  105. Sorlier P, Denuzière A, Viton C et al (2001) Relation between the degree of acetylation and the electrostatic properties of chitin and chitosan. Biomacromolecules 2(3):765–772PubMedCrossRefPubMedCentralGoogle Scholar
  106. Spahn C, Minteer SD (2008) Enzyme immobilization in biotechnology. Recent Pat Eng 2(3):195–200CrossRefGoogle Scholar
  107. Sullivan Å, Nord CE (2005) Probiotics and gastrointestinal diseases. J Int Med 257(1):78–92CrossRefGoogle Scholar
  108. Sun J, Yang L, Jiang M et al (2017) Stability and activity of immobilized trypsin on carboxymethyl chitosan-functionalized magnetic nanoparticles cross-linked with carbodiimide and glutaraldehyde. J Chromatogr B 1054:57–63CrossRefGoogle Scholar
  109. Suo H, Xu L, Xu C et al (2018) Enhancement of catalytic performance of porcine pancreatic lipase immobilized on functional ionic liquid modified Fe3O4-chitosan nanocomposites. Int J Biol Macromol 119:624–632PubMedCrossRefPubMedCentralGoogle Scholar
  110. Tang ZX, Qian JQ, Shi LE (2006) Characterizations of immobilized neutral proteinase on chitosan nano-particles. Process Biochem 41(5):1193–1197CrossRefGoogle Scholar
  111. Tarasi R, Alipour M, Gorgannezhad L et al (2018) Laccase immobilization onto magnetic β-cyclodextrin-modified chitosan: improved enzyme stability and efficient performance for phenolic compounds elimination. Macromol Res 2018:1–8Google Scholar
  112. Thomas MB, Vaidyanathan M, Radhakrishnan K et al (2014) Enhanced viability of probiotic Saccharomyces boulardii encapsulated by layer-by-layer approach in pH responsive chitosan-dextran sulfate polyelectrolytes. J Food Eng 136:1–8CrossRefGoogle Scholar
  113. Tiwari M (2017) The role of serratiopeptidase in the resolution of inflammation. Asian J Pharma Sci 12(3):209–212CrossRefGoogle Scholar
  114. Valerio SG, Alves JS, Klein MP et al (2013) High operational stability of invertase from Saccharomyces cerevisiae immobilized on chitosan nanoparticles. Carbohydr Polym 92(1):462–468PubMedCrossRefPubMedCentralGoogle Scholar
  115. Vallés D, Furtado S, Villadóniga C et al (2011) Adsorption onto alumina and stabilization of cysteine proteinases from crude extract of solanum granuloso-leprosum fruits. Process Biochem 46(2):592–598CrossRefGoogle Scholar
  116. Vijayaraghavan K, Yamini D, Ambika V et al (2009) Trends in inulinase production–a review. Crit Rev Biotechnol 29(1):67–77PubMedCrossRefPubMedCentralGoogle Scholar
  117. Waifalkar PP, Parit SB, Chougale AD et al (2016) Immobilization of invertase on chitosan coated γ-Fe2O3 magnetic nanoparticles to facilitate magnetic separation. J Colloid Interface Sci 482:159–164PubMedCrossRefPubMedCentralGoogle Scholar
  118. Wang ZG, Wan LS, Liu ZM et al (2009) Enzyme immobilization on electrospun polymer nanofibers: an overview. J Mol Cat B: Enzym 56(4):189–195CrossRefGoogle Scholar
  119. Wang Y, Begum-Haque S, Telesford KM et al (2014) A commensal bacterial product elicits and modulates migratory capacity of CD39+ CD4 T regulatory subsets in the suppression of neuroinflammation. Gut Microbes 5(4):552–561PubMedCrossRefPubMedCentralGoogle Scholar
  120. Wang XY, Jiang XP, Li Y et al (2015) Preparation Fe3O4@ chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. Int J Biol Macromol 75:44–50PubMedCrossRefPubMedCentralGoogle Scholar
  121. Wen H, Nallathambi V, Chakraborty D et al (2011) Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase. Microchim Acta 175(3–4):283–289CrossRefGoogle Scholar
  122. Wong LS, Khan F, Micklefield J (2009) Selective covalent protein immobilization: strategies and applications. Chem Rev 109(9):4025–4053PubMedCrossRefPubMedCentralGoogle Scholar
  123. Wu Y, Wang Y, Luo G et al (2009a) In situ preparation of magnetic Fe3O4-chitosan nanoparticles for lipase immobilization by cross-linking and oxidation in aqueous solution. Bioresour Technol 100(14):3459–3464PubMedCrossRefPubMedCentralGoogle Scholar
  124. Wu H, Wang J, Kang X et al (2009b) Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 80(1):403–406PubMedCrossRefPubMedCentralGoogle Scholar
  125. Xiang X, Ding S, Suo H et al (2018) Fabrication of chitosan-mesoporous silica SBA-15 nanocomposites via functional ionic liquid as the bridging agent for PPL immobilization. Carbohydr Polym 182:245–253PubMedCrossRefPubMedCentralGoogle Scholar
  126. Yang Z, Si S, Zhang C (2008) Study on the activity and stability of urease immobilized onto nanoporous alumina membranes. Microporous Mesoporous Mater 111(1–3):359–366CrossRefGoogle Scholar
  127. Yang K, Xu NS, Su WW (2010) Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field. J Biotechnol 148(2–3):119–127PubMedCrossRefPubMedCentralGoogle Scholar
  128. Zang L, Qiu J, Wu X et al (2014) Preparation of magnetic chitosan nanoparticles as support for cellulase immobilization. Ind Eng Chem Res 53(9):3448–3454CrossRefGoogle Scholar
  129. Ziegler-Borowska M, Chelminiak-Dudkiewicz D, Siódmiak T et al (2017) Chitosan–collagen coated magnetic nanoparticles for lipase immobilization—new type of “enzyme friendly” polymer shell crosslinking with squaric acid. Catalysts 7(1):26CrossRefGoogle Scholar
  130. Zou B, Hu Y, Cui F et al (2014) Effect of surface modification of low cost mesoporous SiO2 carriers on the properties of immobilized lipase. J Colloid Interface Sci 417:210–216PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Subham Rakshit
    • 1
  • Suman Kumar Halder
    • 1
    Email author
  • Keshab Chandra Mondal
    • 1
  1. 1.Department of MicrobiologyVidyasagar UniversityWest BengalIndia

Personalised recommendations