Advertisement

Nanoparticles and Plant Interaction with Respect to Stress Response

  • Mohammed Shariq Iqbal
  • Akhilesh Kumar Singh
  • Satarudra Prakash Singh
  • Mohammad Israil AnsariEmail author
Chapter
  • 99 Downloads
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Abiotic stresses are very important constraints that adversely affect the production of a crop. Plants are sessile organisms that are exposed to environmental variations and various stress factors throughout their life. Plants handle these stress conditions and develop various mechanisms to counteract adverse conditions. Nanotechnology is an emerging new field of sciences with novel ideas for understanding the appropriate mechanisms of plant stress. In nanobiotechnology, ultrafine particles ranging in size from 1 to 100 nm are used. During plant stress, antioxidant enzymes are significant in the defense mechanism against reactive oxygen species (ROS). Exposure with nanoparticles has reported improved antioxidant potential for stress tolerance of plants by enhancing free radical scavenging activity. The ultrafine nanoparticles penetrate the body of the plant in a size-dependent mechanism and then are translocated to the grown plant. Nanobiotechnology and nanoparticles impact the plant system for development of plant growth as well as ROS scavenging potential. Nanoparticles that are synthesized from plants are environmentally friendly as well as economical for research work. In this chapter, we discuss plant stress tolerance against the mechanistic action of nanoparticles, leading to better plant growth and plant yields under stress conditions.

Keywords

Antioxidants Abiotic stress Nanoparticle Nanobiotechnology Reactive oxygen species (ROS) 

References

  1. Acharyulu NPS, Dubey RS, Swaminadham V, Kalyani RL, Kollu P, Pammi SVN (2014) Green synthesis of CuO nanoparticles using Phyllanthus amarus leaf extract and their antibacterial activity against multidrug resistance bacteria. Int J Eng Res Technol 3(4):639–641Google Scholar
  2. Arif N, Yadav V, Singh S, Tripathi DK, Dubey NK, Chauhan DK, Giorgetti L (2018) Interaction of copper oxide nanoparticles with plants: uptake, accumulation, and toxicity. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 297–310CrossRefGoogle Scholar
  3. Arouja V, Dubourguier HC, Kasemets K, Kahru A (2009) Toxicity of nanoparticles of CuO, ZnO, and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ 407:1461–1468CrossRefGoogle Scholar
  4. Arumugama A, Karthikeyan C, Hameed ASH, Gopinath K, Gowri S, Karthika V (2015) Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng 49:408–415CrossRefGoogle Scholar
  5. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD, Jaruga P, Dizdaroglu M, Xing B, Nelson BC (2012) Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ Sci Technol 46:1819–1827PubMedCrossRefPubMedCentralGoogle Scholar
  6. Auffan M, Achouak W, Rose J, Roncato MA, Chanéac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735PubMedCrossRefPubMedCentralGoogle Scholar
  7. Barrena R, Casals E, Colón J, Font X, Sánchez A, Puntes V (2009) Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75(7):850–857PubMedCrossRefPubMedCentralGoogle Scholar
  8. Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222PubMedCrossRefPubMedCentralGoogle Scholar
  9. Begum P, Ikhtiari R, Fugetsu B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49(12):3907–3919CrossRefGoogle Scholar
  10. Besson-Bard A, Gravot A, Richaud P et al (2009) Nitric oxide contributes to cadmium toxicity in arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake. Plant Physiol 149(3):1302–1315PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bin Hussein MZ, Zainal Z, Yahaya AH, Foo DWV (2002) Controlled release of a plant growth regulator, ǖFC;- naphthaleneacetate from the lamella of Zn-Al-layered double hydroxide nanocomposite. J Control Release 82(2–3):417–427PubMedCrossRefPubMedCentralGoogle Scholar
  12. Birbaum K, Brogioli R, Schellenberg M et al (2010) No evidence for cerium dioxide nanoparticle translocation in maize plants. Environ Sci Technol 44(22):8718–8723PubMedCrossRefPubMedCentralGoogle Scholar
  13. Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J (2011) Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L. Int J Biosci Biochem Bioninform 1:282–285Google Scholar
  14. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40:4374–4381PubMedCrossRefPubMedCentralGoogle Scholar
  15. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:17–71CrossRefGoogle Scholar
  16. Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag 29(9):2587–2595PubMedCrossRefPubMedCentralGoogle Scholar
  17. Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13(6):2443–2449CrossRefGoogle Scholar
  18. Clarke BB, Brennan E (1989) Differential cadmium accumulation and phytotoxicity in sixteen tobacco cultivars. J Air Waste Manage Assoc 39(10):1319–1322Google Scholar
  19. Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100(7):1383–1389PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3:1CrossRefGoogle Scholar
  21. Dietz KJ, Herth S (2011) Plant nanotoxicology. Trends Plant Sci 16:582–589PubMedCrossRefPubMedCentralGoogle Scholar
  22. Dwivedi RS, Randhawa NS (1974) Evaluation of a rapid test for the hidden hunger of zinc in plants. Plant Soil 40(2):445–451CrossRefGoogle Scholar
  23. Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 15:250–251, 318–32Google Scholar
  24. Feizi H, Rezvani MP, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146(1):101–106PubMedCrossRefPubMedCentralGoogle Scholar
  25. Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838PubMedPubMedCentralCrossRefGoogle Scholar
  26. Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, Larroque C (2002) Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294:116–119PubMedCrossRefPubMedCentralGoogle Scholar
  27. Fugetsu B, Parvin B (2011) Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. In: Bianco S (ed) Carbon nanotubes—from research to applications. CC BY-NC-SAGoogle Scholar
  28. Ghodake G, Seo YD, Park D, Lee DS (2010) Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelectron Optoelectron 5(2):157–160CrossRefGoogle Scholar
  29. Gopinath P, Gogoi SK, Sanpui P, Paul A, Chattopadhyay A, Ghosh SS (2010) Signaling gene cascade in silver nanoparticle induced apoptosis. Colloids Surf. B 77:240–245CrossRefGoogle Scholar
  30. Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and cd-induced phytotoxicity in wheat roots. Phytochemistry 69(14):2609–2615PubMedCrossRefGoogle Scholar
  31. Han T, Fan T, Chow S, Zhang D (2010) Biogenic N-PcodopedTiO2: synthesis, characterization and photocatalytic properties. Bioresour Technol 101(17):6829–6835PubMedCrossRefGoogle Scholar
  32. Hartley W, Lepp NW (2008) Remediation of arsenic contaminated soils by iron-oxide application, evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Sci Total Environ 390(1):35–44PubMedCrossRefGoogle Scholar
  33. Huang FM, Tai KW, Chou MY, Chang YC (2002) Cytotoxicity of resin-, zinc oxide-eugenol-, and calcium hydroxidebased root canal sealers on human periodontal ligament cells and permanent V79 cells. Int Endod J 35(2):153–158PubMedCrossRefGoogle Scholar
  34. Jalil SU, Ahmed I, Ansari MI (2017) Functional loss of GABA transaminase (GABA-T) expressed early leaf senescence under various stress conditions in Arabidopsis thaliana. Curr Plant Biol 9–10:11–22CrossRefGoogle Scholar
  35. Jalil SU, Zahera M, Khan MS, Ansari MI (2018) Biochemical synthesis of gold nanoparticles from leaf protein of Nicotiana tabacum L. cv. xanthi and their physiological, developmental and ROS scavenging responses on tobacco plant under stress conditions. IET Nanobiotechnol.  https://doi.org/10.1007/978-3-319-95480-6_14CrossRefGoogle Scholar
  36. Jayalakshmi, Yogamoorthi A (2014) Green synthesis of copper oxide nanoparticles using aqueous extract of Cassia alata and particles characterization. Int. J Nanomat Biostuct 4(4):66–71Google Scholar
  37. Jefferson DA (2000) The surface activity of ultrafine particles. Philos Trans R Soc Lond Ser A 358:2683–2692CrossRefGoogle Scholar
  38. Jiang HS, Li M, Chang FY, Li W, Yin LY (2012) Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrrhiza. Environ Toxicol Chem 31:1880–1886PubMedCrossRefGoogle Scholar
  39. John MK, VanLaerhoven CJ, Chuah HH (1972) Factors affecting plant uptake and phytotoxicity of cadmium added to soils. Environ Sci Technol 6(12):1005–1009CrossRefGoogle Scholar
  40. Juhel G, Batisse E, Hugues Q, Daly D, van Pelt FN, O’Halloran J, Jansen MA (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105(3): 328–336PubMedCrossRefPubMedCentralGoogle Scholar
  41. Kamat JP, Devasagayam TP, Priyadarsini KI, Mohan H (2000) Reactive oxygen species mediated membrane damage induced by fullerene derivatives and its possible biological implications. Toxicology 155:55–61PubMedCrossRefGoogle Scholar
  42. Kashem MA, Kawai S (2007) Alleviation of cadmium phytotoxicity by magnesium in Japanese mustard spinach. Soil Sci Plant Nutr 53(3):246–251CrossRefGoogle Scholar
  43. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kollmeier M, Felle HH, Horst WJ (2000) Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum? Plant Physiol 122(3):945–956PubMedPubMedCentralCrossRefGoogle Scholar
  45. Koul A, Kumar A, Singh VK, Tripathi DK, Mallubhotla S (2018) Exploring plant-mediated copper, iron, titanium, and cerium oxide nanoparticles and their impacts. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, San Diego, pp 175–194CrossRefGoogle Scholar
  46. Kumari M, Mukherjee A, Chandrasekaran N (2009) Genotoxicity of silver nanoparticles in Allium cepa. Sci Total Environ 407:5243–5246PubMedCrossRefGoogle Scholar
  47. Kurepa J, Paunesku T, Vogt S et al (2010) Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10(7):2296–2302PubMedPubMedCentralCrossRefGoogle Scholar
  48. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675PubMedCrossRefGoogle Scholar
  49. Ma H, Bertsch PM, Glenn TC, Kabengi NJ, Williams PL (2009) Toxicity of manufactured zinc oxide nanoparticles in the nematode Caenorhabditis elegans. Environ Toxicol Chem 28(6):1324–1330PubMedCrossRefGoogle Scholar
  50. Ma X, Geisler-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061PubMedCrossRefGoogle Scholar
  51. Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013) Physiological andmolecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustainable Chem Eng 1(7):768–778CrossRefGoogle Scholar
  52. Ma C, White JC, Zhao J, Zhao Q, Xing B (2018) Uptake of engineered nanoparticles by food crops: characterization, mechanisms, and implications. Annu Rev Food Sci Technol 9:129–153PubMedCrossRefPubMedCentralGoogle Scholar
  53. Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hortic Plants 3:25–32Google Scholar
  54. Maine MA, Duarte MV, Su˜n’e NL (2001) Cadmium uptake by floating macrophytes. Water Res 35(11):2629–2634PubMedCrossRefGoogle Scholar
  55. Marschner HM (1995) Nutrition of higher plants, 2nd edn. Academic Press, San DiegoGoogle Scholar
  56. Morla S, Ramachandra Rao CSV, Chakrapani R (2011) Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J Chem Bio Phys Sci B 1: 328–334.Google Scholar
  57. Mirzajani F, Askari H, Hamzelou S, Schober Y, Römpp A, Ghassempour A, Spengler B (2014) Proteomics study of silver nanoparticles toxicity on Oryza sativa L. Ecotoxicol Environ Saf 108:335–339PubMedCrossRefGoogle Scholar
  58. Muller J, Huaux F, Moreau N et al (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207(3):221–231PubMedCrossRefGoogle Scholar
  59. Mustafa G, Sakata K, Komatsu S (2015a) Proteomic analysis of flooded soybean root exposed to aluminumoxide nanoparticles. J Proteome 128:280–297CrossRefGoogle Scholar
  60. Mustafa G, Sakata K, Hossain Z, Komatsu S (2015b) Proteomic study on the effects of silver nanoparticles onsoybean under flooding stress. J Proteome 122:100–118CrossRefGoogle Scholar
  61. Nasrollahzadeha M, Sajadib SM, Vartoonia AR, Khalajc M (2015) Green synthesis of Pd/Fe3O4 nanoparticles using Euphorbia condylocarpa M. bieb root extract and their catalytic applications as magnetically recoverable and stable recyclablecatalysts for the phosphine-free Sonogashira and Suzuki coupling reactions. J Mol Catal A Chem 396:31–39CrossRefGoogle Scholar
  62. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386PubMedCrossRefPubMedCentralGoogle Scholar
  63. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627PubMedCrossRefPubMedCentralGoogle Scholar
  64. Nevius BA, Chen YP, Ferry JL, Decho AW (2012) Surface functionalization effects on uptake of fluorescent polystyrene nanoparticles by model biofilms. Ecotoxicology 21(8):2205–2213PubMedCrossRefPubMedCentralGoogle Scholar
  65. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22PubMedCrossRefPubMedCentralGoogle Scholar
  66. Olchowik J, Bzdyk RM, Studnicki M, Bederska-Błaszczyk M, Urban A, Aleksandrowicz-Trzcinska M (2017) The effect of silver and copper nanoparticles on the condition of English Oak (Quercus robur L.) seedlings in a container nursery experiment. Forests 8:310CrossRefGoogle Scholar
  67. Owen R, Handy R (2007) Formulating the problems for environmental risk assessment of nanomaterials. Environ Sci Technol 41:5582–5588PubMedCrossRefPubMedCentralGoogle Scholar
  68. Petersen EJ, Henry TB, Zhao J, MacCuspie RI, Kirschling TL, Dobrovolskaia MA, Hackley V, Xing B, White JC (2014) Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environ Sci Technol 48:4226–4246PubMedPubMedCentralCrossRefGoogle Scholar
  69. Pola M, Tamara LC, Andrew TH (2012) Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46(17):9224–9239CrossRefGoogle Scholar
  70. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TSP, Sajanlal R, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35(6):905–927CrossRefGoogle Scholar
  71. Qi M, Liu Y, Li T (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156(1–3):323–328PubMedCrossRefPubMedCentralGoogle Scholar
  72. Qiu Z, Yang Q, Liu W (2013) Photocatalytic degradation of phytotoxic substances in waste nutrient solution by various immobilized levels of nano-TiO2. Water Air Soil Pollut 224(3):1–10CrossRefGoogle Scholar
  73. Ramimoghadam D, Bagheri S, Bee S, Hamid A (2014) Biotemplated synthesis of anatase titanium dioxide nanoparticles via lignocellulosic waste material. Biomed Res Int 2014:205636PubMedPubMedCentralCrossRefGoogle Scholar
  74. Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M, El-Sheery NI, Brestic M (2019a) Application of silicon nanoparticles in agriculture. 3 Biotech 9(3):90PubMedPubMedCentralCrossRefGoogle Scholar
  75. Rastogi A, Zivcak M, Tripathi DK, Yadav S, Kalaji HM, Brestic M (2019b) Phytotoxic effect of silver nanoparticles in Triticum aestivum: improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica 57(1):209–216CrossRefGoogle Scholar
  76. Riahi-Madvar A, Rezaee F, Jalili V (2012) Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. Iran J Plant Physiol 3:595–603Google Scholar
  77. Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang JY, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–5642PubMedCrossRefPubMedCentralGoogle Scholar
  78. Roh JY, Eom HJ, Choi J (2012) Involvement of Caenorhabditis elegans MAPK signaling pathways in oxidative stress response induced by silver nanoparticles exposure. Toxicol Res 28:19–24PubMedPubMedCentralCrossRefGoogle Scholar
  79. Ryan PR, Shaff JE, Kochian LV (1992) Aluminum toxicity in roots: correlation among ionic currents, ion fluxes, and root elongation in aluminum-sensitive and aluminum-tolerant wheat cultivars. Plant Physiol 99(3):1193–1200PubMedPubMedCentralCrossRefGoogle Scholar
  80. Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int. res. J. Biotechnol 3:190–197Google Scholar
  81. Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2:61–68Google Scholar
  82. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145:83–96CrossRefGoogle Scholar
  83. Sharma P, Bhatt D, Zaidi MG, Saradhi PP, Khanna PK, Arora S (2012) Silver naoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233PubMedCrossRefPubMedCentralGoogle Scholar
  84. Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915PubMedCrossRefPubMedCentralGoogle Scholar
  85. Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of syrian barley (Hordeum vulgare L.). Environ Exp Bot 102:37–47CrossRefGoogle Scholar
  86. Sheykhbaglou R, Sedghi M, Shishevan MT, Sharifi RS (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2:112–113CrossRefGoogle Scholar
  87. Shweta, Vishwakarma K, Sharma S, Narayan RP, Srivastava P, Khan AS, Dubey NK, Tripathi DK, Chauhan DK (2017) Plants and carbon nanotubes (CNTs) interface: present status and future prospects. In: Nanotechnology. Springer, Singapore, pp 317–340CrossRefGoogle Scholar
  88. Shweta, Tripathi DK, Chauhan DK, Peralta-Videa JR (2018) Availability and risk assessment of nanoparticles in living systems: a virtue or a peril? In: Nanomaterials in plants, algae, and microorganisms. Academic Press, San Diego, pp 1–31Google Scholar
  89. Singh S, Tripathi DK, Dubey NK, Chauhan DK (2016) Effects of nano-materials on seed germination and seedling growth: striking the slight balance between the concepts and controversies. Mater Focus 5(3):195–201CrossRefGoogle Scholar
  90. Singh J, Vishwakarma K, Ramawat N, Rai P, Singh VK, Mishra RK, Kumar V, Tripathi DK, Sharma S (2019) Nanomaterials and microbes’ interactions: a contemporary overview. 3 Biotech 9(3):68PubMedPubMedCentralCrossRefGoogle Scholar
  91. Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46:10247–10254PubMedPubMedCentralGoogle Scholar
  92. Smirnova E, Gusev A, Zaytseva O et al (2012) Uptake and accumulation of multiwalled carbon nanotubes change themorphometric and biochemical characteristics of Onobrychis arenaria Seedlings. Front Chem Sci Eng 6(2):132–138CrossRefGoogle Scholar
  93. Soares C, Branco-Neves S, de Sousa A, Pereira R, Fidalgo F (2016) Ecotoxicological relevance of nano-NiO and acetaminophen to Hordeum vulgare L.: Combining standardized procedures and physiological endpoints. Chemosphere 165:442–452PubMedCrossRefPubMedCentralGoogle Scholar
  94. Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22PubMedPubMedCentralCrossRefGoogle Scholar
  95. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479PubMedCrossRefPubMedCentralGoogle Scholar
  96. Stella WYW, Priscilla TYL, Djuriˇsi’c AB, MYL K (2010) Toxicities of nano zinc oxide to five marinenorganisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396(2):609–618CrossRefGoogle Scholar
  97. Stephen GW, Li H, Jennifer H, Da-Ren C, In-Chul K, Yinjie JT (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3:4Google Scholar
  98. Tan XM, Fugetsu B (2007) Multi-walled carbon nanotubes interact with cultured rice cells: evidence of a self-defense response. J Biomed Nanotechnol 3(3):285–288CrossRefGoogle Scholar
  99. Tani FH, Barrington S (2005) Zinc and copper uptake by plants under two transpiration rates. Part I.Wheat (Triticum aestivum L). Environ Pollut 138(3):538–547PubMedCrossRefPubMedCentralGoogle Scholar
  100. Taylor GJ, Foy CD (1985) Differential uptake and toxicity of ionic and chelated copper in Triticum aestivum. Can J Bot 63(7):1271–1275CrossRefGoogle Scholar
  101. Thwala M, Musee N, Sikhwivhilu L, Wepener V (2013) The oxidative toxicity of ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ Sci Process Impacts 15:1830–1843PubMedCrossRefPubMedCentralGoogle Scholar
  102. Tian Q, Sun D, Zhao M, Zhang W (2007) Inhibition of nitric oxide synthase (NOS) underlies aluminum-induced inhibition of root elongation in Hibiscus moscheutos. New Phytol 174(2):322–331PubMedCrossRefPubMedCentralGoogle Scholar
  103. Tran QH, Nguyen VQ, Le AT (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci 4:033001Google Scholar
  104. Tripathi DK, Ahmad P, Sharma S, Chauhan DK, Dubey NK (eds) (2017) Nanomaterials in plants, algae, and microorganisms: concepts and controversies (vol. 1). Academic Press, LondonGoogle Scholar
  105. Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L, Bracale M (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One 8:e68752PubMedPubMedCentralCrossRefGoogle Scholar
  106. Vellora V, Padil T, Černík M (2013) Green synthesis of copper oxide nanoparticles using Gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine 8:889–898Google Scholar
  107. Verano-Braga T, Miethling-Graff R, Wojdyla K, Rogowska-Wrzesinska A, Brewer JR, Erdmann H, Kjeldsen F (2014) Insights into the cellular response triggered by silver nanoparticles using quantitative proteomics. ACS Nano 8:2161–2175PubMedCrossRefPubMedCentralGoogle Scholar
  108. Vishwakarma K, Upadhyay N, Kumar N, Tripathi DK, Chauhan DK, Sharma S, Sahi S (2018) Potential applications and avenues of nanotechnology in sustainable agriculture. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London, pp 473–500CrossRefGoogle Scholar
  109. Wang X, Summers CJ, Wang ZL (2004) Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett 4(3):423–426PubMedCrossRefPubMedCentralGoogle Scholar
  110. Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012) Multiwalled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14(6):841CrossRefGoogle Scholar
  111. Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125(1):199–208PubMedPubMedCentralCrossRefGoogle Scholar
  112. Yang K, Ma Y (2010) Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol 5(8):579–583PubMedCrossRefPubMedCentralGoogle Scholar
  113. Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7:e47674PubMedPubMedCentralCrossRefGoogle Scholar
  114. Yuan H, Hu S, Huang P et al (2011) Single walled carbon nanotubes exhibit dual-phase regulation to exposed Arabidopsis mesophyll cells. Nanoscale Res Lett 6(1):1–9Google Scholar
  115. Yuan J, Chen Y, Li H, Lu J, Zhao H, Liu M, Nechitaylo GS, Glushchenko NN (2018a) New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Sci Rep 8:3228PubMedPubMedCentralCrossRefGoogle Scholar
  116. Yuan L, Richardson CJ, Ho M, Willis CW, Colman BP, Wiesner MR (2018b) Stress responses of aquatic plants to silver nanoparticles. Environ Sci Technol 52(5):2558–2565PubMedCrossRefPubMedCentralGoogle Scholar
  117. Zhang W, Dan Y, Shi H, Ma X (2017) Elucidating the mechanisms for plant uptake and in-planta speciation of cerium in radish (Raphanus sativus L.) treated with cerium oxide nanoparticles. J Environ Chem Eng 5(1):572–577CrossRefGoogle Scholar
  118. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10(6):713–717PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohammed Shariq Iqbal
    • 1
  • Akhilesh Kumar Singh
    • 1
  • Satarudra Prakash Singh
    • 1
  • Mohammad Israil Ansari
    • 2
    Email author
  1. 1.Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow CampusLucknowIndia
  2. 2.Department of BotanyUniversity of LucknowLucknowIndia

Personalised recommendations