Advertisement

Heparanase pp 647-667 | Cite as

Heparanase in Kidney Disease

  • Johan van der VlagEmail author
  • Baranca Buijsers
Chapter
  • 141 Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1221)

Abstract

The primary filtration of blood occurs in the glomerulus in the kidney. Destruction of any of the layers of the glomerular filtration barrier might result in proteinuric disease. The glomerular endothelial cells and especially its covering layer, the glycocalyx, play a pivotal role in development of albuminuria. One of the main sulfated glycosaminoglycans in the glomerular endothelial glycocalyx is heparan sulfate. The endoglycosidase heparanase degrades heparan sulfate, thereby affecting glomerular barrier function, immune reactivity and inflammation. Increased expression of glomerular heparanase correlates with loss of glomerular heparan sulfate in many glomerular diseases. Most importantly, heparanase knockout in mice prevented the development of albuminuria after induction of experimental diabetic nephropathy and experimental glomerulonephritis. Therefore, heparanase could serve as a pharmacological target for glomerular diseases. Several factors that regulate heparanase expression and activity have been identified and compounds aiming to inhibit heparanase activity are currently explored.

Keywords

Kidney Glomerular filtration barrier Glomerular endothelial cells Podocytes Macrophages Glycocalyx Heparan sulfate Heparanase 

References

  1. 1.
    Scott, R. P., & Quaggin, S. E. (2015, April). The cell biology of renal filtration. The Journal of Cell Biology, 209(2), 199–210.Google Scholar
  2. 2.
    Miner, J. H. (2012, May). The glomerular basement membrane. Experimental Cell Research, 318(9), 973–978.Google Scholar
  3. 3.
    Haraldsson, B., Nystrom, J., & Deen, W. M. (2008, April). Properties of the glomerular barrier and mechanisms of proteinuria. Physiological Reviews, 88(2), 451–487.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Shute, J. (2012). Glycosaminoglycan and chemokine/growth factor interactions. Handbook of experimental pharmacology, 207, 307–324.CrossRefGoogle Scholar
  5. 5.
    Maezawa, Y., Takemoto, M., & Yokote, K. (2015, January). Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes. Journal of diabetes investigation, 6(1), 3–15.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Schött, U., Solomon, C., Fries, D., & Bentzer, P. (2016, April). The endothelial glycocalyx and its disruption, protection and regeneration: A narrative review. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 24, 48.Google Scholar
  7. 7.
    Goldberg, R., Rubinstein, A. M., Gil, N., Hermano, E., Li, J. P., van der Vlag, J., et al. (2014, December). Role of heparanase-driven inflammatory cascade in pathogenesis of diabetic nephropathy. Diabetes, 63(12), 4302–4313.PubMedCrossRefGoogle Scholar
  8. 8.
    Friden, V., Oveland, E., Tenstad, O., Ebefors, K., Nystrom, J., Nilsson, U. A., et al. (2011, June). The glomerular endothelial cell coat is essential for glomerular filtration. Kidney International, 79(12), 1322–1330.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Reiser, J., & Altintas, M. M. (2016, January). Podocytes. F1000Research, 5: F1000 Faculty Rev-114.Google Scholar
  10. 10.
    Ichimura, K., Kurihara, H., & Sakai, T. (2003, December). Actin filament organization of foot processes in rat podocytes. The Journal of Histochemistry and Cytochemistry, 51(12), 1589–1600.Google Scholar
  11. 11.
    Kriz, W., Hackenthal, E., Nobiling, R., Sakai, T., Elger, M., & Hahnel, B. (1994, February). A role for podocytes to counteract capillary wall distension. Kidney International, 45(2), 369–376.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Garsen, M., Lenoir, O., Rops, A. L., Dijkman, H. B., Willemsen, B., van Kuppevelt, T. H., et al. (2016, December). Endothelin-1 induces proteinuria by Heparanase-mediated disruption of the glomerular Glycocalyx. Journal of the American Society of Nephrology, 27(12), 3545–3551.Google Scholar
  13. 13.
    Haraldsson, B., & Nystrom, J. (2012, May). The glomerular endothelium: New insights on function and structure. Current Opinion in Nephrology and Hypertension, 21(3), 258–263.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Esser, S., Wolburg, K., Wolburg, H., Breier, G., Kurzchalia, T., & Risau, W. (1998, February). Vascular endothelial growth factor induces endothelial fenestrations in vitro. The Journal of Cell Biology, 140(4), 947–959.Google Scholar
  15. 15.
    van den Hoven, M. J., Rops, A. L., Vlodavsky, I., Levidiotis, V., Berden, J. H., & van der Vlag, J. (2007, September). Heparanase in glomerular diseases. Kidney International, 72(5), 543–548.PubMedCrossRefGoogle Scholar
  16. 16.
    Goldberg, S., Harvey, S. J., Cunningham, J., Tryggvason, K., & Miner, J. H. (2009, July). Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane. Nephrology, Dialysis, Transplantation, 24(7), 2044–2051.Google Scholar
  17. 17.
    Harvey, S. J., Jarad, G., Cunningham, J., Rops, A. L., van der Vlag, J., Berden, J. H., et al. (2007, July). Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. The American Journal of Pathology, 171(1), 139–152.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Chen, S., Wassenhove-McCarthy, D. J., Yamaguchi, Y., Holzman, L. B., van Kuppevelt, T. H., Jenniskens, G. J., et al. (2008, August). Loss of heparan sulfate glycosaminoglycan assembly in podocytes does not lead to proteinuria. Kidney International, 74(3), 289–299.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    van den Hoven, M. J., Wijnhoven, T. J., Li, J. P., Zcharia, E., Dijkman, H. B., Wismans, R. G., et al. (2008, February). Reduction of anionic sites in the glomerular basement membrane by heparanase does not lead to proteinuria. Kidney International, 73(3), 278–287.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Bame, K. J. (2001, June). Heparanases: Endoglycosidases that degrade heparan sulfate proteoglycans. Glycobiology, 11(6), 91r–98r.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Wilson, J. C., Laloo, A. E., Singh, S., & Ferro, V. (2014, January). 1H NMR spectroscopic studies establish that heparanase is a retaining glycosidase. Biochemical and Biophysical Research Communications, 443(1), 185–188.Google Scholar
  22. 22.
    Wu, L., Viola, C. M., Brzozowski, A. M., & Davies, G. J. (2015, December). Structural characterization of human heparanase reveals insights into substrate recognition. Nature Structural & Molecular Biology, 22(12), 1016–1022.CrossRefGoogle Scholar
  23. 23.
    Rabelink, T. J., van den Berg, B. M., Garsen, M., Wang, G., Elkin, M., & van der Vlag, J. (2017, April). Heparanase: Roles in cell survival, extracellular matrix remodelling and the development of kidney disease. Nature Reviews Nephrology, 13(4), 201–212.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Abboud-Jarrous, G., Atzmon, R., Peretz, T., Palermo, C., Gadea, B. B., Joyce, J. A., et al. (2008, June). Cathepsin L is responsible for processing and activation of Proheparanase through multiple cleavages of a linker segment. The Journal of Biological Chemistry, 283(26), 18167–18176.Google Scholar
  25. 25.
    Buczek-Thomas, J. A., Hsia, E., Rich, C. B., Foster, J. A., & Nugent, M. A. (2008, September). Inhibition of histone Acetyltransferase by Glycosaminoglycans. Journal of Cellular Biochemistry, 105(1), 108–120.Google Scholar
  26. 26.
    Stewart, M. D., & Sanderson, R. D. (2014, April). Heparan sulfate in the nucleus and its control of cellular functions. Matrix Biology, 35, 56–59.Google Scholar
  27. 27.
    Wang, F., Wang, Y., Zhang, D., Puthanveetil, P., Johnson, J. D., & Rodrigues, B. (2012, February). Fatty acid-induced nuclear translocation of heparanase uncouples glucose metabolism in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(2), 406–414.PubMedCrossRefGoogle Scholar
  28. 28.
    Roy, M., & Marchetti, D. (2009). Cell surface Heparan Sulfate released by Heparanase promotes melanoma cell migration and angiogenesis. Journal of Cellular Biochemistry, 106(2), 200–209.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Sasaki, N., Higashi, N., Taka, T., Nakajima, M., Irimura, T. (2004, March). Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate. Journal of Immunology, 172(6), 3830–3835.Google Scholar
  30. 30.
    Ziolkowski, A. F., Popp, S. K., Freeman, C., Parish, C. R., Simeonovic, C. J. (2012, January). Heparan sulfate and heparanase play key roles in mouse β cell survival and autoimmune diabetes. The Journal of Clinical Investigation, 122(1), 132–141.Google Scholar
  31. 31.
    Sanderson, R. D., Elkin, M., Rapraeger, A. C., Ilan, N., & Vlodavsky, I. (2017, September). Heparanase regulation of cancer, autophagy and inflammation: New mechanisms and targets for therapy. The FEBS Journal, 284(1), 42–55.Google Scholar
  32. 32.
    Goldberg, R., Meirovitz, A., Hirshoren, N., Bulvik, R., Binder, A., Rubinstein, A. M., et al. (2013, June). Versatile role of heparanase in inflammation. Matrix Biology, 32(5), 234–240.Google Scholar
  33. 33.
    Garsen, M., Rops, A. L., Rabelink, T. J., Berden, J. H., & van der Vlag, J. (2014, January). The role of heparanase and the endothelial glycocalyx in the development of proteinuria. Nephrology, Dialysis, Transplantation, 29(1), 49–55.Google Scholar
  34. 34.
    Levidiotis, V., Kanellis, J., Ierino, F. L., & Power, D. A. (2001, October). Increased expression of heparanase in puromycin aminonucleoside nephrosis. Kidney International, 60(4), 1287–1296.Google Scholar
  35. 35.
    Levidiotis, V., Freeman, C., Tikellis, C., Cooper, M. E., & Power, D. A. (2004, January). Heparanase is involved in the pathogenesis of proteinuria as a result of glomerulonephritis. Journal of the American Society of Nephrology, 15(1), 68–78.Google Scholar
  36. 36.
    Levidiotis, V., Freeman, C., Punler, M., Martinello, P., Creese, B., Ferro, V., et al. (2004, November). A synthetic heparanase inhibitor reduces proteinuria in passive Heymann nephritis. Journal of the American Society of Nephrology, 15(11), 2882–2892.Google Scholar
  37. 37.
    Simeonovic, C. J., Ziolkowski, A. F., Wu, Z., Choong, F. J., Freeman, C., & Parish, C. R. (2013, December). Heparanase and autoimmune diabetes. Frontiers in Immunology, 4, 471.Google Scholar
  38. 38.
    Gil, N., Goldberg, R., Neuman, T., Garsen, M., Zcharia, E., Rubinstein, A. M., et al. (2012, January). Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes, 61(1), 208–216.Google Scholar
  39. 39.
    van den Hoven, M. J., Rops, A. L., Bakker, M. A., Aten, J., Rutjes, N., Roestenberg, P., et al. (2006, December). Increased expression of heparanase in overt diabetic nephropathy. Kidney International, 70(12), 2100–2108.PubMedCrossRefGoogle Scholar
  40. 40.
    Garsen, M., Benner, M., Dijkman, H. B., van Kuppevelt, T. H., Li, J. P., Rabelink, T. J., et al. (2016, April). Heparanase is essential for the development of acute experimental glomerulonephritis. The American Journal of Pathology, 186(4), 805–815.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Ilan, N., Shteingauz, A., & Vlodavsky, I. (2015). Function from within: Autophagy induction by HPSE/heparanase—New possibilities for intervention. Autophagy, 11(12), 2387–2389.Google Scholar
  42. 42.
    Sever, S., Altintas, M. M., Nankoe, S. R., Moller, C. C., Ko, D., Wei, C., et al. (2007, August). Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. The Journal of Clinical Investigation, 117(8), 2095–2104.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Faul, C., Donnelly, M., Merscher-Gomez, S., Chang, Y. H., Franz, S., Delfgaauw, J., et al. (2008, September). The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine a. Nature Medicine, 14(9), 931–938.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Yaddanapudi, S., Altintas, M. M., Kistler, A. D., Fernandez, I., Moller, C. C., Wei, C., et al. (2011, October). CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. The Journal of Clinical Investigation, 121(10), 3965–3980.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lehtonen, S., Zhao, F., & Lehtonen, E. (2002, October). CD2-associated protein directly interacts with the actin cytoskeleton. American Journal of Physiology Renal Physiology, 283(4), F734–F743.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Reiser, J., Adair, B., & Reinheckel, T. (2010, October). Specialized roles for cysteine cathepsins in health and disease. The Journal of Clinical Investigation, 120(10), 3421–3431.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kim, J. M., Wu, H., Green, G., Winkler, C. A., Kopp, J. B., Miner, J. H., et al. (2003, May). CD2-associated protein haploinsufficiency is linked to glomerular disease susceptibility. Science300(5623), 1298–1300.Google Scholar
  48. 48.
    Huber, T. B., Kwoh, C., Wu, H., Asanuma, K., Godel, M., Hartleben, B., et al. (2006, May). Bigenic mouse models of focal segmental glomerulosclerosis involving pairwise interaction of CD2AP, Fyn, and synaptopodin. The Journal of Clinical Investigation, 116(5), 1337–1345.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Mundel, P., & Reiser, J. (2010, April). Proteinuria: An enzymatic disease of the podocyte? Kidney International, 77(7), 571–580.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Garsen, M., Rops, A. L., Dijkman, H., Willemsen, B., van Kuppevelt, T. H., Russel, F. G., et al. (2016, November). Cathepsin L is crucial for the development of early experimental diabetic nephropathy. Kidney International, 90(5), 1012–1022.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Baricos, W. H., Cortez, S. L., Le, Q. C., Wu, L. T., Shaw, E., Hanada, K., et al. (1991, August). Evidence suggesting a role for cathepsin L in an experimental model of glomerulonephritis. Archives of Biochemistry and Biophysics, 288(2), 468–472.Google Scholar
  52. 52.
    Lehrke, I., Waldherr, R., Ritz, E., & Wagner, J. (2001, November). Renal endothelin-1 and endothelin receptor type B expression in glomerular diseases with proteinuria. Journal of the American Society of Nephrology, 12(11), 2321–2329.Google Scholar
  53. 53.
    Karet, F. E., Kuc, R. E., & Davenport, A. P. (1993, July). Novel ligands BQ123 and BQ3020 characterize endothelin receptor subtypes ETA and ETB in human kidney. Kidney International, 44(1), 36–42.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Wendel, M., Knels, L., Kummer, W., & Koch, T. (2006, November). Distribution of endothelin receptor subtypes ETA and ETB in the rat kidney. The Journal of Histochemistry and Cytochemistry, 54(11), 1193–1203.Google Scholar
  55. 55.
    Barton, M., & Yanagisawa, M. (2008, August). Endothelin: 20 years from discovery to therapy. Canadian Journal of Physiology and Pharmacology, 86(8), 485–498.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Clozel, M., & Salloukh, H. (2005). Role of endothelin in fibrosis and anti-fibrotic potential of bosentan. Annals of Medicine, 37(1), 2–12.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Shi-Wen, X., Denton, C. P., Dashwood, M. R., Holmes, A. M., Bou-Gharios, G., Pearson, J. D., et al. (2001, March). Fibroblast matrix gene expression and connective tissue remodeling: Role of endothelin-1. The Journal of Investigative Dermatology, 116(3), 417–425.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Neuhofer, W., & Pittrow, D. (2006, September). Role of endothelin and endothelin receptor antagonists in renal disease. European Journal of Clinical Investigation, 36(Suppl 3), 78–88.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Fukui, M., Nakamura, T., Ebihara, I., Osada, S., Tomino, Y., Masaki, T., et al. (1993, August). Gene expression for endothelins and their receptors in glomeruli of diabetic rats. The Journal of Laboratory and Clinical Medicine, 122(2), 149–156.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Fligny, C., Barton, M., & Tharaux, P. L. (2011). Endothelin and podocyte injury in chronic kidney disease. Contributions to Nephrology, 172, 120–138.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Yoshimura, A., Iwasaki, S., Inui, K., Ideura, T., Koshikawa, S., Yanagisawa, M., et al. (1995, October). Endothelin-1 and endothelin B type receptor are induced in mesangial proliferative nephritis in the rat. Kidney International, 48(4), 1290–1297.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Barton, M. (2008, September). Reversal of proteinuric renal disease and the emerging role of endothelin. Nature Clinical Practice Nephrology, 4(9), 490–501.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Mann, J. F., Green, D., Jamerson, K., Ruilope, L. M., Kuranoff, S. J., Littke, T., et al. (2010, March). Avosentan for overt diabetic nephropathy. Journal of the American Society of Nephrology, 21(3), 527–535.Google Scholar
  64. 64.
    Schievink, B., de Zeeuw, D., Smink, P. A., Andress, D., Brennan, J. J., Coll, B., et al. (2016, May). Prediction of the effect of atrasentan on renal and heart failure outcomes based on short-term changes in multiple risk markers. European Journal of Preventive Cardiology, 23(7), 758–768.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kohan, D. E., & Barton, M. (2014, November). Endothelin and endothelin antagonists in chronic kidney disease. Kidney International, 86(5), 896–904.Google Scholar
  66. 66.
    Ortmann, J., Amann, K., Brandes, R. P., Kretzler, M., Munter, K., Parekh, N., et al. (2004, December). Role of podocytes for reversal of glomerulosclerosis and proteinuria in the aging kidney after endothelin inhibition. Hypertension, 44(6), 974–981.Google Scholar
  67. 67.
    Gomez-Garre, D., Largo, R., Liu, X. H., Gutierrez, S., Lopez-Armada, M. J., Palacios, I., et al. (1996, September). An orally active ETA/ETB receptor antagonist ameliorates proteinuria and glomerular lesions in rats with proliferative nephritis. Kidney International, 50(3), 962–972.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Tousoulis, D., Kampoli, A. M., Tentolouris, C., Papageorgiou, N., & Stefanadis, C. (2012, January). The role of nitric oxide on endothelial function. Current Vascular Pharmacology, 10(1), 4–18.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Davignon, J., & Ganz, P. (2004, June). Role of endothelial dysfunction in atherosclerosis. Circulation, 109(23 Suppl 1), Iii27–Iii32.Google Scholar
  70. 70.
    Nakayama, T., Sato, W., Kosugi, T., Zhang, L., Campbell-Thompson, M., Yoshimura, A., et al. (2009, February). Endothelial injury due to eNOS deficiency accelerates the progression of chronic renal disease in the mouse. American Journal of Physiology Renal Physiology, 296(2), F317–F327.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sun, Y. B., Qu, X., Zhang, X., Caruana, G., Bertram, J. F., & Li, J. (2013). Glomerular endothelial cell injury and damage precedes that of podocytes in adriamycin-induced nephropathy. PLoS One, 8(1), e55027.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Heeringa, P., van Goor, H., Itoh-Lindstrom, Y., Maeda, N., Falk, R. J., Assmann, K. J., et al. (2000, March). Lack of endothelial nitric oxide synthase aggravates murine accelerated anti-glomerular basement membrane glomerulonephritis. The American Journal of Pathology., 156(3), 879–888.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Zhao, H. J., Wang, S., Cheng, H., Zhang, M. Z., Takahashi, T., Fogo, A. B., et al. (2006, October). Endothelial nitric oxide synthase deficiency produces accelerated nephropathy in diabetic mice. Journal of the American Society of Nephrology, 17(10), 2664–2669.Google Scholar
  74. 74.
    Nakagawa, T., Sato, W., Glushakova, O., Heinig, M., Clarke, T., Campbell-Thompson, M., et al. (2007, February). Diabetic endothelial nitric oxide synthase knockout mice develop advanced diabetic nephropathy. Journal of the American Society of Nephrology, 18(2), 539–550.Google Scholar
  75. 75.
    Kanetsuna, Y., Takahashi, K., Nagata, M., Gannon, M. A., Breyer, M. D., Harris, R. C., et al. (2007, May). Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice. The American Journal of Pathology, 170(5), 1473–1484.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Savard, S., Lavoie, P., Villeneuve, C., Agharazii, M., Lebel, M., & Lariviere, R. (2012, June). eNOS gene delivery prevents hypertension and reduces renal failure and injury in rats with reduced renal mass. Nephrology, Dialysis, Transplantation, 27(6), 2182–2190.Google Scholar
  77. 77.
    Garsen, M., Rops, A. L., Li, J., van Beneden, K., van den Branden, C., Berden, J. H., et al. (2016). Endothelial nitric oxide synthase prevents Heparanase induction and the development of proteinuria. PLoS One, 11(8), e0160894.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Mawer, E. B., Taylor, C. M., Backhouse, J., Lumb, G. A., & Stanbury, S. W. (1973, March). Failure of formation of 1,25-dihydroxycholecalciferol in chronic renal insufficiency. Lancet, 1(7804), 626–628.Google Scholar
  79. 79.
    Garsen, M., Sonneveld, R., Rops, A. L., Huntink, S., van Kuppevelt, T. H., Rabelink, T. J., et al. (2015, December). Vitamin D attenuates proteinuria by inhibition of heparanase expression in the podocyte. The Journal of Pathology, 237(4), 472–481.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Toyoda, M., Najafian, B., Kim, Y., Caramori, M. L., & Mauer, M. (2007, August). Podocyte detachment and reduced glomerular capillary endothelial fenestration in human type 1 diabetic nephropathy. Diabetes, 56(8), 2155–2160.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Weil, E. J., Lemley, K. V., Mason, C. C., Yee, B., Jones, L. I., Blouch, K., et al. (2012, June). Podocyte detachment and reduced glomerular capillary endothelial fenestration promote kidney disease in type 2 diabetic nephropathy. Kidney International, 82(9), 1010–1017.Google Scholar
  82. 82.
    Katz, A., Van-Dijk, D. J., Aingorn, H., Erman, A., Davies, M., Darmon, D., et al. (2002, November). Involvement of human heparanase in the pathogenesis of diabetic nephropathy. The Israel Medical Association Journal, 4(11), 996–1002.Google Scholar
  83. 83.
    Singh, A., Friden, V., Dasgupta, I., Foster, R. R., Welsh, G. I., Tooke, J. E., et al. (2011, January). High glucose causes dysfunction of the human glomerular endothelial glycocalyx. American Journal of Physiology Renal Physiology, 300(1), F40–F48.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Singh, A., Ramnath, R. D., Foster, R. R., Wylie, E. C., Friden, V., Dasgupta, I., et al. (2013). Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx. PLoS One, 8(2), e55852.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    van den Hoven, M. J., Waanders, F., Rops, A. L., Kramer, A. B., van Goor, H., Berden, J. H., et al. (2009, September). Regulation of glomerular heparanase expression by aldosterone, angiotensin II and reactive oxygen species. Nephrology, Dialysis, Transplantation, 24(9), 2637–2645.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Rops, A. L., van den Hoven, M. J., Veldman, B. A., Salemink, S., Vervoort, G., Elving, L. D., et al. (2012, July). Urinary heparanase activity in patients with type 1 and type 2 diabetes. Nephrology, Dialysis, Transplantation, 27(7), 2853–2861.PubMedCrossRefGoogle Scholar
  87. 87.
    Duran-Salgado, M. B., & Rubio-Guerra, A. F. (2014, June). Diabetic nephropathy and inflammation. World Journal of Diabetes, 5(3), 393–398.Google Scholar
  88. 88.
    Lim, A. K. H., & Tesch, G. H. (2012). Inflammation in diabetic nephropathy. Mediators of Inflammation, 2012, 146154.Google Scholar
  89. 89.
    Navarro-Gonzalez, J. F., Mora-Fernandez, C., Muros de Fuentes, M., & Garcia-Perez, J. (2011, June). Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nature Reviews Nephrology, 7(6), 327–340.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    You, H., Gao, T., Cooper, T. K., Brian Reeves, W., & Awad, A. S. (2013, December). Macrophages directly mediate diabetic renal injury. American Journal of Physiology Renal Physiology, 305(12), F1719–F1727.Google Scholar
  91. 91.
    Tesch, G. H. (2010, May). Macrophages and diabetic nephropathy. Seminars in Nephrology, 30(3), 290–301.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Shanmugam, N., Reddy, M. A., Guha, M., & Natarajan, R. (2003, May). High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells. Diabetes, 52(5), 1256–1264.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Cha, J. J., Hyun, Y. Y., Lee, M. H., Kim, J. E., Nam, D. H., Song, H. K., et al. (2013, June). Renal protective effects of toll-like receptor 4 signaling blockade in type 2 diabetic mice. Endocrinology, 154(6), 2144–2155.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Jin, X., Yao, T., Ze, Z., Zhu, J., Zhang, S., Hu, W., et al. (2015). Advanced Glycation end products enhance macrophages polarization into M1 phenotype through activating RAGE/NF-κB pathway. BioMed Research International, 2015, 732450.Google Scholar
  95. 95.
    Navarro-Gonzalez, J. F., Jarque, A., Muros, M., Mora, C., & Garcia, J. (2009, April). Tumor necrosis factor-alpha as a therapeutic target for diabetic nephropathy. Cytokine & Growth Factor Reviews, 20(2), 165–173.CrossRefGoogle Scholar
  96. 96.
    Chow, F. Y., Nikolic-Paterson, D. J., Atkins, R. C., & Tesch, G. H. (2004, December). Macrophages in streptozotocin-induced diabetic nephropathy: Potential role in renal fibrosis. Nephrology, Dialysis, Transplantation, 19(12), 2987–2996.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Tashiro, K., Koyanagi, I., Saitoh, A., Shimizu, A., Shike, T., Ishiguro, C., et al. (2002). Urinary levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8), and renal injuries in patients with type 2 diabetic nephropathy. Journal of Clinical Laboratory Analysis, 16(1), 1–4.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Boels, M. G. S., Koudijs, A., Avramut, M. C., Sol, W., Wang, G., van Oeveren-Rietdijk, A. M., et al. (2017, November). Systemic monocyte chemotactic Protein-1 inhibition modifies renal macrophages and restores glomerular endothelial Glycocalyx and barrier function in diabetic nephropathy. The American Journal of Pathology, 187(11), 2430–2440.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Lerner, I., Hermano, E., Zcharia, E., Rodkin, D., Bulvik, R., Doviner, V., et al. (2011, May). Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. The Journal of Clinical Investigation, 121(5), 1709–1721.Google Scholar
  100. 100.
    Goodall, K. J., Poon, I. K., Phipps, S., & Hulett, M. D. (2014). Soluble heparan sulfate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4. PLoS One, 9(10), e109596.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Devaraj, S., Tobias, P., Kasinath, B. S., Ramsamooj, R., Afify, A., & Jialal, I. (2011, August). Knockout of toll-like receptor-2 attenuates both the proinflammatory state of diabetes and incipient diabetic nephropathy. Arteriosclerosis, Thrombosis, and Vascular Biology, 31(8), 1796–1804.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Blich, M., Golan, A., Arvatz, G., Sebbag, A., Shafat, I., Sabo, E., et al. (2013, February). Macrophages activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(2), e56–e65.Google Scholar
  103. 103.
    Gordts, P., Foley, E. M., Lawrence, R., Sinha, R., Lameda-Diaz, C., Deng, L., et al. (2014, November). Reducing macrophage proteoglycan sulfation increases atherosclerosis and obesity through enhanced type I interferon signaling. Cell Metabolism, 20(5), 813–826.Google Scholar
  104. 104.
    Gordts, P. L. S. M., & Esko, J. D. (2015, March). Heparan sulfate proteoglycans fine-tune macrophage inflammation via IFN-β. Cytokine, 72(1), 118–119.Google Scholar
  105. 105.
    Goldberg, R., Sonnenblick, A., Hermano, E., Hamburger, T., Meirovitz, A., Peretz, T., et al. (2017, March). Heparanase augments insulin receptor signaling in breast carcinoma. Oncotarget, 8(12), 19403–19412.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Ritchie, J. P., Ramani, V. C., Ren, Y., Naggi, A., Torri, G., Casu, B., et al. (2011, March). SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clinical Cancer Research, 17(6), 1382–1393.Google Scholar
  107. 107.
    Kuhnast, B., El Hadri, A., Boisgard, R., Hinnen, F., Richard, S., Caravano, A., et al. (2016, February). Synthesis, radiolabeling with fluorine-18 and preliminary in vivo evaluation of a heparan sulphate mimetic as potent angiogenesis and heparanase inhibitor for cancer applications. Organic & Biomolecular Chemistry, 14(6), 1915–1920.Google Scholar
  108. 108.
    Xu, D., & Esko, J. D. (2014). Demystifying heparan sulfate-protein interactions. Annual Review of Biochemistry, 83, 129–157.PubMedCrossRefGoogle Scholar
  109. 109.
    Blich, M., Golan, A., Arvatz, G., Sebbag, A., Shafat, I., Sabo, E., et al. (2013, February). Macrophage activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression. Arteriosclerosis, Thrombosis, and Vascular Biology, 33(2), e56–e65.PubMedCrossRefGoogle Scholar
  110. 110.
    Nadanaka, S., Purunomo, E., Takeda, N., Tamura, J., & Kitagawa, H. (2014, May). Heparan sulfate containing unsubstituted glucosamine residues: Biosynthesis and heparanase-inhibitory activity. The Journal of Biological Chemistry, 289(22), 15231–15243.Google Scholar
  111. 111.
    Niu, T. T., Zhang, D. S., Chen, H. M., & Yan, X. J. (2015, July). Modulation of the binding of basic fibroblast growth factor and heparanase activity by purified lambda-carrageenan oligosaccharides. Carbohydrate Polymers, 125, 76–84.Google Scholar
  112. 112.
    Poplawska, A., Szelachowska, M., Topolska, J., Wysocka-Solowie, B., & Kinalska, I. (1997, November). Effect of glycosaminoglycans on urinary albumin excretion in insulin-dependent diabetic patients with micro- or macroalbuminuria. Diabetes Research and Clinical Practice, 38(2), 109–114.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Weissmann, M., Arvatz, G., Horowitz, N., Feld, S., Naroditsky, I., Zhang, Y., et al. (2016, January). Heparanase-neutralizing antibodies attenuate lymphoma tumor growth and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 113(3), 704–709.Google Scholar
  114. 114.
    Zetser, A., Levy-Adam, F., Kaplan, V., Gingis-Velitski, S., Bashenko, Y., Schubert, S., et al. (2004, June). Processing and activation of latent heparanase occurs in lysosomes. Journal of Cell Science, 117(Pt 11), 2249–2258.Google Scholar
  115. 115.
    de Zeeuw, D., Bekker, P., Henkel, E., Hasslacher, C., Gouni-Berthold, I., Mehling, H., et al. (2015, September). The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: A randomised trial. The Lancet Diabetes & Endocrinology, 3(9), 687–696.CrossRefGoogle Scholar
  116. 116.
    Menne, J., Eulberg, D., Beyer, D., Baumann, M., Saudek, F., Valkusz, Z., et al. (2017, February). C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrology, Dialysis, Transplantation, 32(2), 307–315.Google Scholar
  117. 117.
    Baricos, W. H., O’Connor, S. E., Cortez, S. L., Wu, L. T., & Shah, S. V. (1988, September). The cysteine proteinase inhibitor, E-64, reduces proteinuria in an experimental model of glomerulonephritis. Biochemical and Biophysical Research Communications, 155(3), 1318–1323.Google Scholar
  118. 118.
    Levy-Adam, F., Feld, S., Cohen-Kaplan, V., Shteingauz, A., Gross, M., Arvatz, G., et al. (2010, September). Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity. The Journal of Biological Chemistry, 285(36), 28010–28019.Google Scholar
  119. 119.
    Guo, C., Kaneko, S., Sun, Y., Huang, Y., Vlodavsky, I., Li, X., et al. (2015, April). A mouse model of urofacial syndrome with dysfunctional urination. Human Molecular Genetics, 24(7), 1991–1999.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Nephrology (480)Radboud Institute for Molecular Life Sciences, Radboud University Medical CenterNijmegenThe Netherlands

Personalised recommendations