Advertisement

Quantum Algorithms for the Most Frequently String Search, Intersection of Two String Sequences and Sorting of Strings Problems

  • Kamil KhadievEmail author
  • Artem Ilikaev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11934)

Abstract

We study algorithms for solving three problems on strings. The first one is the Most Frequently String Search Problem. The problem is the following. Assume that we have a sequence of n strings of length k. The problem is finding the string that occurs in the sequence most often. We propose a quantum algorithm that has a query complexity \(\tilde{O}(n \sqrt{k})\). This algorithm shows speed-up comparing with the deterministic algorithm that requires \(\varOmega (nk)\) queries.

The second one is searching intersection of two sequences of strings. All strings have the same length k. The size of the first set is n and the size of the second set is m. We propose a quantum algorithm that has a query complexity \(\tilde{O}((n+m) \sqrt{k})\). This algorithm shows speed-up comparing with the deterministic algorithm that requires \(\varOmega ((n+m)k)\) queries.

The third problem is sorting of n strings of length k. On the one hand, it is known that quantum algorithms cannot sort objects asymptotically faster than classical ones. On the other hand, we focus on sorting strings that are not arbitrary objects. We propose a quantum algorithm that has a query complexity \(O(n (\log n)^2 \sqrt{k})\). This algorithm shows speed-up comparing with the deterministic algorithm (radix sort) that requires \(\varOmega ((n+d)k)\) queries, where d is a size of the alphabet.

Keywords

Quantum computation Quantum models Quantum algorithm Query model String search Sorting 

Notes

Acknowledgments

This work was supported by Russian Science Foundation Grant 19-71-00149. We thank Aliya Khadieva, Farid Ablayev and Kazan Federal University quantum group for useful discussions.

References

  1. 1.
    Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness problems. J. ACM (JACM) 51(4), 595–605 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Adel’son-Vel’skii, G.M., Landis, E.M.: An algorithm for organization of information. In: Doklady Akademii Nauk, vol. 146, pp. 263–266. Russian Academy of Sciences (1962)Google Scholar
  3. 3.
    Aggarwal, C.C.: Data Streams: Models and Algorithms, vol. 31. Springer, Berlin (2007).  https://doi.org/10.1007/978-0-387-47534-9CrossRefzbMATHGoogle Scholar
  4. 4.
    Ambainis, A.: Understanding quantum algorithms via query complexity. arXiv:1712.06349 (2017)
  5. 5.
    Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2004, pp. 22–31 (2004)Google Scholar
  6. 6.
    Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Becchetti, L., Chatzigiannakis, I., Giannakopoulos, Y.: Streaming techniques and data aggregation in networks of tiny artefacts. Comput. Sci. Rev. 5(1), 27–46 (2011)CrossRefGoogle Scholar
  8. 8.
    Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Black, P.E.: Dictionary of algorithms and data structures. Technical report, NIST (1998)Google Scholar
  10. 10.
    Boyar, J., Larsen, K.S., Maiti, A.: The frequent items problem in online streaming under various performance measures. Int. J. Found. Comput. Sci. 26(4), 413–439 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschr. Phys. 46(4–5), 493–505 (1998)CrossRefGoogle Scholar
  12. 12.
    Brass, P.: Advanced data structures, vol. 193. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  13. 13.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. McGraw-Hill, New York (2001)zbMATHGoogle Scholar
  14. 14.
    Cormode, G., Hadjieleftheriou, M.: Finding frequent items in data streams. Proc. VLDB Endow. 1(2), 1530–1541 (2008)CrossRefGoogle Scholar
  15. 15.
    De La Briandais, R.: File searching using variable length keys. In: Western Joint Computer Conference, 3–5 March 1959, pp. 295–298. ACM (1959)Google Scholar
  16. 16.
    De Wolf, R.: Quantum computing and communication complexity (2001)Google Scholar
  17. 17.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996)Google Scholar
  18. 18.
    Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: Proceedings of SFCS 1978, pp. 8–21. IEEE (1978)Google Scholar
  19. 19.
    Høyer, P., Neerbek, J., Shi, Y.: Quantum complexities of ordered searching, sorting, and element distinctness. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 346–357. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-48224-5_29CrossRefzbMATHGoogle Scholar
  20. 20.
    Høyer, P., Neerbek, J., Shi, Y.: Quantum complexities of ordered searching, sorting, and element distinctness. Algorithmica 34(4), 429–448 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Jordan, S.: Bounded error quantum algorithms zoo. https://math.nist.gov/quantum/zoo
  22. 22.
    Kravchenko, D., Khadiev, K., Serov, D.: On the quantum and classical complexity of solving subtraction games. In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 228–236. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-19955-5_20CrossRefzbMATHGoogle Scholar
  23. 23.
    Khadiev, K., Safina, L.: Quantum algorithm for dynamic programming approach for DAGs. Applications for Zhegalkin polynomial evaluation and some problems on DAGs. In: McQuillan, I., Seki, S. (eds.) UCNC 2019. LNCS, vol. 11493, pp. 150–163. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-19311-9_13CrossRefzbMATHGoogle Scholar
  24. 24.
    Klauck, H.: Quantum time-space tradeoffs for sorting. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 69–76. ACM (2003)Google Scholar
  25. 25.
    Knuth, D.: Searching and Sorting, The Art of Computer Programming, vol. 3 (1973)Google Scholar
  26. 26.
    Kothari, R.: An optimal quantum algorithm for the oracle identification problem. In: 31st International Symposium on Theoretical Aspects of Computer Science, p. 482 (2014)Google Scholar
  27. 27.
    Lin, C.Y.Y., Lin, H.H.: Upper bounds on quantum query complexity inspired by the Elitzur-Vaidman bomb tester. In: 30th Conference on Computational Complexity (CCC 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2015)Google Scholar
  28. 28.
    Lin, C.Y.Y., Lin, H.H.: Upper bounds on quantum query complexity inspired by the Elitzur-Vaidman bomb tester. Theory Comput. 12(18), 1–35 (2016)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Long, G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64(2), 022307 (2001)CrossRefGoogle Scholar
  30. 30.
    Montanaro, A.: Quantum pattern matching fast on average. Algorithmica 77(1), 16–39 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Muthukrishnan, S.: Data streams: algorithms and applications. Found. Trends Theor. Comput. Sci. 1(2), 117–236 (2005)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  33. 33.
    Odeh, A., Abdelfattah, E.: Quantum sort algorithm based on entanglement qubits \(\{\)00, 11\(\}\). In: 2016 IEEE Long Island Systems, Applications and Technology Conference (LISAT), pp. 1–5. IEEE (2016)Google Scholar
  34. 34.
    Odeh, A., Elleithy, K., Almasri, M., Alajlan, A.: Sorting N elements using quantum entanglement sets. In: Third International Conference on Innovative Computing Technology (INTECH 2013), pp. 213–216. IEEE (2013)Google Scholar
  35. 35.
    Ramesh, H., Vinay, V.: String matching in \(o (\sqrt{n}+ \sqrt{m})\) quantum time. J. Discrete Algorithms 1(1), 103–110 (2003)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Williams, J.W.J.: Algorithm 232 - heapsort. Commun. ACM 7(6), 347–349 (1964)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Smart Quantum Technologies Ltd.KazanRussia
  2. 2.Kazan Federal UniversityKazanRussia

Personalised recommendations