Advertisement

Data-Driven Hospital Surgery Scheduling Optimization

  • Zhigang Li
  • Yan YiEmail author
  • Xichen Wu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11924)

Abstract

With the deepening reform of the medical system, major hospitals have begun to pay attention to the research on the optimization of medical resource allocation, and seek ways to improve patient satisfaction and reduce hospital operating costs. This paper takes data as the center, collects data through on-site investigation, and analyzes the scheduling problem of the current hospital operating room by using surgical scheduling knowledge and business flow chart. Combining the constraints and the actual situation of the hospital, a multi-objective mixed integer programming model with the lowest operating room operating cost and the highest patient satisfaction was established, and the optimal solution was obtained using Lingo software. The optimization results were verified by FlexsimHC simulation software, and the effects before and after the optimization of the surgical scheduling were compared. The research results provided a basis for optimizing the operation schedule, reducing the operating cost of the operating room and improving patient satisfaction, and established an event data-driven analysis paradigm for operating room scheduling optimization.

Keywords

Surgical scheduling Multi-objective FlexsimHC simulation software 

Notes

Funding

This work was supported by the Sichuan Regional Public Management Informationization Research Center Project “Study on the Coordination Mechanism and Governance Countermeasures of Shared Medical Stakeholder Network under the Background of Internet +” (No. QGXH18-02).

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Aida, J., Atidel, B., Hadj, A.: Operating rooms scheduling. Int. J. Prod. Econ. 99, 52–62 (2006).  https://doi.org/10.1016/j.ijpe.2004.12.006CrossRefGoogle Scholar
  2. 2.
    Bowers, J., Mould, G.: Ambulatory care and orthopaedic capacity planning. Health Care Manage. 8(1), 41–47 (2005).  https://doi.org/10.1007/s10729-005-5215-4CrossRefGoogle Scholar
  3. 3.
    Bai, X., Luo, L., Li, R.: Operating room scheduling: research overview and prospect. Manage. Rev. 23(1), 121–128 (2011).  https://doi.org/10.14120/j.cnki.cn11-5057/f.2011.01.001CrossRefGoogle Scholar
  4. 4.
    Luo, L., Kang, S.: Theory, method and application of medical service resource scheduling optimization. Science Press, Beijing (2013). ISBN: 9787030396259Google Scholar
  5. 5.
    Cardoen, B., Demeulemeester, E., Beliёn, J.: Optimizing a multiple objective surgical case sequencing problem. Int. J. Prod. Econ. 119(2), 354–366 (2009).  https://doi.org/10.1016/j.ijpe.2009.03.009CrossRefGoogle Scholar
  6. 6.
    Tan, H., et al.: Simulation of surface segmentation workshop scheduling simulation. Ship Eng. 36(02), 99–102 (2014).  https://doi.org/10.13788/j.cnki.cbgc.2014.0057CrossRefGoogle Scholar
  7. 7.
    Vicent, T.: Solving a bicriteria scheduling problem on unrelated paralled machines occurring in the glass bottle industry. Eur. J. Oper. Res. 135(1), 42–49 (2001).  https://doi.org/10.1016/S0377-2217(00)00288-5CrossRefGoogle Scholar
  8. 8.
    Landa, P., Aringhieri, R., Soriano, P., Tanfani, E., Testi, A.: A hybrid optimization algorithm for surgeries scheduling. Oper. Res. Health Care 8, 103–114 (2016).  https://doi.org/10.1016/j.orhc.2016.01.001CrossRefzbMATHGoogle Scholar
  9. 9.
    Ozkarahan, I.: Allocation of surgeries to operating rooms by goal programming. J. Med. Syst. 24(6), 339–378 (2000).  https://doi.org/10.1023/A:1005548727003CrossRefGoogle Scholar
  10. 10.
    Blake, J.T., Cater, M.W.: A goal programming approach to strategic resource allocation in acute care hospitals. Eur. J. Oper. Res. 140(3), 541–561 (2002).  https://doi.org/10.1016/S0377-2217(01)00219-3MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Beliën, J., Demeulemeester, E.: Building cyclic master surgery schedules with leveled resulting bed occupancy. Eur. J. Oper. Res. 176(2), 1185–1204 (2007).  https://doi.org/10.1016/j.ejor.2005.06.063CrossRefzbMATHGoogle Scholar
  12. 12.
    Lamiri, M., Xiea, X., Dolgui, A.: A stochastic model for operating room planning with elective and emergency demand for surgery. Eur. J. Oper. Res. 185(3), 1026–1037 (2008).  https://doi.org/10.1016/j.ejor.2006.02.057MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wang, K., Zhou, Z., Wang, S.: Application of mathematical model to the allocation of the hospital sickbeds. J. Math. Med. 24(2), 226–228 (2011).  https://doi.org/10.3969/j.issn.1004-4337.2011.02.044CrossRefGoogle Scholar
  14. 14.
    Silvaab, T.A.O., de Souzac, M.C., Saldanhad, R.R., Burkee, E.K.: Surgical scheduling with simultaneous employment of specialised human resources. Eur. J. Oper. Res. 245(3), 719–730 (2015).  https://doi.org/10.1016/j.ejor.2015.04.008MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ma, C., et al.: The mathematical models of short term operation scheduling optimization problem. Math. Pract. Theory 47(21), 207–214 (2017). http://www.cnki.com.cn/Article/CJFDTotal-SSJS201721026.htm
  16. 16.
    Guido, R., Conforti, D.: A hybrid genetic approach for solving an integrated multi-objective operating room planning and scheduling problem. Comput. Oper. Res. 87, 270–282 (2017).  https://doi.org/10.1016/j.cor.2016.11.009MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Arenas, M., et al.: Analysis via goal programming of the minimum achievable stay in surgical waiting lists. J. Oper. Res. Soc. 53(4), 387–396 (2002).  https://doi.org/10.1057/palgrave.jors.2601310CrossRefzbMATHGoogle Scholar
  18. 18.
    Guinet, A., Chaabane, S.: Operating theatre planning. Int. J. Prod. Econ. 85(1), 69–81 (2003).  https://doi.org/10.1016/S0925-5273(03)00087-2CrossRefGoogle Scholar
  19. 19.
    Daiki, M., Yuehwern, Y.: An elextive surgery scheduling problem considering patient priority. Comput. Oper. Res. 37(6), 1091–1099 (2010).  https://doi.org/10.1016/j.cor.2009.09.016CrossRefzbMATHGoogle Scholar
  20. 20.
    Zhao, Z., Li, X.: Scheduling elective surgeries with sequence—dependent setup times to multiple operating rooms using constraint programming. Oper. Res.r Health Care 3(3), 160–167 (2014).  https://doi.org/10.1016/j.orhc.2014.05.003CrossRefGoogle Scholar
  21. 21.
    Wang, D., Liu, F., Yin, Y., et al.: Prioritized surgery scheduling in face of surgeon tiredness and fixed off-duty period. J. Comb. Optim. 30(4), 967–981 (2015).  https://doi.org/10.1007/s10878-015-9846-1MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Meng, F., Chen, H.: Consider the elective surgery scheduling constraint planning model under multi-factor conditions. Comput. Appl. Softw. 12, 83–89 (2018). http://www.cnki.com.cn/Article/CJFDTotal-JYRJ201812016.htm
  23. 23.
    Zhou, B., Yin, M., Zhong, Z.: Lagrangian relaxation-based scheduling algorithm for operating theatres. Syst. Eng. Theory Pract. 36(1), 224–233 (2016).  https://doi.org/10.12011/1000-6788(2016)01-0224-10CrossRefGoogle Scholar
  24. 24.
    Risser, N.L.: Development of an instrument to measure patient satisfaction with nurse and nursing care in primary care settings. Nurs. Res. 5(2), 45–52 (1975).  https://doi.org/10.1097/00006199-197501000-00011CrossRefGoogle Scholar
  25. 25.
    Angela, T., Elena, T.: Tactical and operational decisions for operating room planning: efficiency and welfare implications. Health Care Manage. Sci. 12(4), 363–373 (2009).  https://doi.org/10.1007/s10729-008-9093-4CrossRefGoogle Scholar
  26. 26.
    Zhu, Y., Zhang, Y., Song, Y.: Surgical scheduling considering setup time between surgeries and setup time between surgical teams. J. SE Univ. (Nat. Sci. Ed.) 45(6), 1218–1222 (2015).  https://doi.org/10.3969/j.issn.1001-0505.2015.06.034MathSciNetCrossRefGoogle Scholar
  27. 27.
    Wang, Y., Tang, J., Pan, Z., Yan, C.: Particle swarm optimization-based planning and scheduling for a laminar-flow operating room with downstream resources. Soft. Comput. 19(10), 2913–2926 (2015)CrossRefGoogle Scholar
  28. 28.
    Heydari, M., Soudi, A.: Predictive reactive planning and scheduling of a surgical suite with emergency patient arrival. J. Med. Syst. 40(1), 1–9 (2016).  https://doi.org/10.1007/s10916-015-0385-1CrossRefGoogle Scholar
  29. 29.
    Hao, Z.: A method of surgical scheduling: improving the satisfaction of doctors and patients while cutting operation costs. Ind. Eng. J. 20(4), 49–71 (2017). http://www.cnki.com.cn/Article/CJFDTOTAL-GDJX201704007.htm

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Management ScienceChengdu University of TechnologyChengduChina

Personalised recommendations