3D Printed Ceramic-Polymer Composites for Treating Bone Infection

  • Anusha Elumalai
  • Yangyang Lou
  • Ahmed Humayun
  • A. J. McFarland
  • David K. MillsEmail author


It is well known that bacteria and host cells are in a competitive race for the surfaces of dental and orthopedic implants. If bacteria win the race and a biofilm forms, this can lead to infection, and postsurgical complications that may include revision procedures and increased hospital stays can cost thousands of dollars for a single patient, significant lost time from work, altered and restricted lifestyles, and, death. Bone infections are treated with antibiotics given intravenously or orally, via antibiotic-releasing bone cement or collagen sponges placed directly within the infected area. Collectively, these approaches have limited effectiveness due to the lack of site specificity, uncontrolled release, and additional surgeries. Antibiotics currently in use suffer from systemic toxicity, short half-life, and increases in bacterial resistance. This chapter will cover topics related to antimicrobial biomaterials (e.g., antibiotics, antimicrobial peptides, etc.), antimicrobial coatings, antimicrobial drug delivery vehicles, as well as research integrating both antimicrobial and osteoinductive/osteoconductive properties. Antibiotic resistance and implants ineffective in inhibiting antimicrobial growth offer to shift the race in favor of bacteria. Strategies designed to increase bacterial resistance and offer a supportive environment for resistant pre-osteoblasts and osteoblasts will also be discussed.


3D printing Bone infection Bone regeneration Ceramics Composites Polymers 



The authors wish to acknowledge the funding assistance provided by the Center for Dental, Oral and Craniofacial Tissue and Organ Regeneration (CDOCTOR) with the support of NIH NIDCR (U24DE026914).

Disclosures: Dr. David K Mills is a co-inventor on Methods and Devices for Three-Dimensional Printing or Additive Manufacturing of Bioactive Medical Devices. United States Patent Application No. 14/822,275 filed on August 10, 2015.


  1. 1.
    Christenson E, Anseth K, van den Beucken J, Chan CB, Orcan B (2007) Nanobiomaterial applications in orthopedics. J Orthop Res 25:1122CrossRefGoogle Scholar
  2. 2.
    Cram P, Lu X, Kates S, Singh J, Li Y, Wolf B (2012) Total knee arthroplasty volume, utilization, and outcomes among Medicare beneficiaries, 1991–2010. JAMA 308(12):1227–1236CrossRefGoogle Scholar
  3. 3.
    Ruiz D, Koeinig L, Dall T, Gallo P, Narzikul A, Parvizi P, Tongue J (2013) The direct and indirect costs to society of treatment for end-stage knee osteoarthritis. J Bone Joint Surg Am 95:1473–1480. Scholar
  4. 4.
    Romanò C, Romanò D, Logoluso N, Drago L (2011) Bone and joint infections in adults: a comprehensive classification proposal. Eur Orthop Traumatol 1(6):207–217. Scholar
  5. 5.
    Bejon P, Robinson E (2013) Bone and joint infection. Medicine 41(12):719–722CrossRefGoogle Scholar
  6. 6.
    Sanchez CJ, Ward CL, Romano DR, Hurtgen BJ, Hardy SK, Woodbury RL, Trevino AV, Rathbone CR, Wenke JC (2013) Staphylococcus aureus biofilms decrease osteoblast viability, inhibits osteogenic differentiation, and increases bone resorption in vitro. BMC Musculoskelet Disord 14:187CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hatzenbueler J, Pulling TJ (2011) Diagnosis and management of osteomyelitis. Am Fam Physician 84(9):1027–1033Google Scholar
  8. 8.
    Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475CrossRefGoogle Scholar
  9. 9.
    Ensrud KE (2013) Epidemiology of fracture risk with advancing age. J Gerontol A Biol Sci Med Sci 68:1236–1242CrossRefGoogle Scholar
  10. 10.
    Marino JT, Ziran BH (2010) Use of solid and cancellous autologous bone graft for fractures and nonunions. Orthop Clin North Am 41:15–26CrossRefGoogle Scholar
  11. 11.
    Wang W, Yeung KWK (2017) Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioactive Mater 2:224–247CrossRefGoogle Scholar
  12. 12.
    O’Keefe RJ, Mao J (2011) Bone tissue engineering and regeneration: from discovery to the clinic—an overview. Tissue Eng Part B Rev 17:389–392CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Szpalski C, Wetterau M, Barr J, Warren SM (2012) Bone tissue engineering: current strategies and techniques−part I: scaffolds. Tissue Eng Pt B 18(4):246–257CrossRefGoogle Scholar
  15. 15.
    Tiffany N, Kasper FK, Mikos AG (2012) Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev 64(12):1292–1309. Scholar
  16. 16.
    Ventola CL (2014) Medical applications for 3D printing: current and projected uses. P T 39(10):704–711PubMedPubMedCentralGoogle Scholar
  17. 17.
    Mills DK (2015) Future medicine: the impact of 3D printing. J Nanomater Mol Nanotechnol 4(3):1–3. Scholar
  18. 18.
    Suresh R, Borkar SN, Sawant VA, Shende VS, Dimble SK (2010) Nanoclay drug delivery system. Int J Pharma Sci Nanotech 3(2):901–905Google Scholar
  19. 19.
    Kotal M, Bhowmick AK (2015) Polymer nanocomposites from modified clays: recent advances and challenges. Prog Polym Sci 51:127–187CrossRefGoogle Scholar
  20. 20.
    Li P-R, Wei J-C, Chiu Y-F, Su H-L, Peng F-C, Lin J-J (2010) Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay. ACS Appl Mater Interfaces 2(6):1608–1613CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Peña-Parás L, Sánchez-Fernández JA, Vidaltamayo R (2017) Nanoclays for biomedical applications. Handb Ecomater:1–19Google Scholar
  22. 22.
    Zhanga Y, Tang A, Yang H, Jing Ouyanga J (2016) Applications and interfaces of halloysite nanocomposites. Appl Clay Sci 119(1):8–17CrossRefGoogle Scholar
  23. 23.
    Lvov Y, Wang W, Zhang L, Fakhrullin R (2016) Halloysite clay nanotubes for loading and sustained release of functional compounds. Adv Mater 28:1227–1250CrossRefGoogle Scholar
  24. 24.
    Du M, Guo B, Jia D (2010) Newly emerging applications of halloysite nanotubes: a review. Polym Int 59:574–582Google Scholar
  25. 25.
    Rawtani D, Agrawal YK (2012) Multifarious applications of halloysite nanotubes: a review. Rev Adv Mater Sci 30:282–295Google Scholar
  26. 26.
    Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112–113:75–93CrossRefGoogle Scholar
  27. 27.
    Liu M, Wu C, Jiao Y, Xiong S, Zhou C (2013) Chitosan-halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B 1(15):2078–2089CrossRefGoogle Scholar
  28. 28.
    Santos AC et al (2018) Halloysite clay nanotubes for life sciences applications: from drug encapsulation to bioscaffold. Adv Colloid Interface Sci 257:58–70CrossRefGoogle Scholar
  29. 29.
    Weisman J, Jammalamadaka U, Tappa K, Mills D (2017) Doped halloysite nanotubes for use in the 3D printing of medical devices. Bioengineering 4(4):96CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Weisman JA, Nicholson JC, Tappa K, Jammalamadaka U, Wilson CG, Mills D (2015) Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications. Int J Nanomedicine 10:357–370PubMedPubMedCentralGoogle Scholar
  31. 31.
    Mills DK, Jammalamadaka U, Tappa K, Weisman J (2018) Studies on the cytocompatibility, mechanical and antimicrobial properties of 3D printed poly(methyl methacrylate) beads. Bioact Mater 3(2):157–166CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Li Y, MacIel D, Tomás H, Rodrigues J, Ma H, Shi X (2011) PH sensitive Laponite/alginate hybrid hydrogels: swelling behaviour and release mechanism. Soft Matter 7(13):6231–6238CrossRefGoogle Scholar
  33. 33.
    Viseras C, Cerezo P, Sanchez R, Salcedo I, Aguzzi C (2010) Current challenges in clay minerals for drug delivery. Appl Clay Sci 48(3):291–295CrossRefGoogle Scholar
  34. 34.
    Uddin F (2018) Montmorillonite: an introduction to properties and utilization. IntechOpen, LondonGoogle Scholar
  35. 35.
    Katti KS, Katti DR, Dash R (2008) Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed Mater 3(3):034122CrossRefGoogle Scholar
  36. 36.
    Jiao L et al (2017) Preparation, characterization, antimicrobial and cytotoxicity studies of copper/zinc- loaded montmorillonite. J Anim Sci Biotechnol 8(1):27CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dijkshoorn L, Nemec A, Seifert H (2007) An increasing threat in hospitals: Multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 5(12):939CrossRefGoogle Scholar
  38. 38.
    Turner RJ (2017) Metal-based antimicrobial strategies. J Microbial Biotechnol 10(5):1062–1065CrossRefGoogle Scholar
  39. 39.
    Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):65CrossRefGoogle Scholar
  40. 40.
    Paladini F, Pollini M, Sannino A, Ambrosio L (2015) Metal-based antibacterial substrates for biomedical applications. Biomacromolecules 16(7):1873–1885CrossRefGoogle Scholar
  41. 41.
    Ewald A, Glückermann SK, Thull R, Gbureck U (2006) Antimicrobial titanium/silver PVD coatings on titanium. Biomed Eng Online 5(1):22CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cheng H et al (2016) Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities. Acta Biomater 31:388–400CrossRefGoogle Scholar
  43. 43.
    Memarzadeh K, Sharili AS, Huang J, Rawlinson SCF, Allaker RP (2015) Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants. J Biomed Mater Res Pt A 103(3):981–989CrossRefGoogle Scholar
  44. 44.
    Wan YZ, Raman S, He F, Huang Y (2007) Surface modification of medical metals by ion implantation of silver and copper. Vacuum 81(9):1114–1118CrossRefGoogle Scholar
  45. 45.
    Garza-Cervantes JA, Chávez-Reyes A, Castillo EC et al (2017) Synergistic antimicrobial effects of silver/transition-metal combinatorial treatments. Sci Rep 7(1):903CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Vaidya MY, McBain AJ, Butler JA, Banks CE, Whitehead KA (2017) Antimicrobial efficacy and synergy of metal ions against enterococcus faecium, klebsiella pneumoniae and acinetobacter baumannii in planktonic and biofilm phenotypes. Sci Rep 7(1):5911CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Patil PA, Bhutkar BR, Dange YD, Kharat SV (2016) Screening of most effective nano metal between AgNP, CuNP and Ag-Cu NP’s synergistic by In vitro antibacterial comparison. J Nanomed Nanotechnol 7(353):2Google Scholar
  48. 48.
    Katva S, Das S, Moti HS, Jyoti A, Kaushik S (2017) Antibacterial synergy of silver nanoparticles with gentamicin and chloramphenicol against Enterococcus faecalis. Pharmacogn Mag 13(Suppl 4):S828Google Scholar
  49. 49.
    Hwang I, Hwang JH, Choi H, Kim K-J, Lee DG (2012) Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved. J Med Microbiol 61(12):1719–1726CrossRefGoogle Scholar
  50. 50.
    Mohiti-Asli M, Pourdeyhimi B, Loboa EG (2014) Novel, silver-ion-releasing nanofibrous scaffolds exhibit excellent antibacterial efficacy without the use of silver nanoparticles. Acta Biomater 10(5):2096–2104CrossRefGoogle Scholar
  51. 51.
    Yu L, Zhang Y, Zhang B, Liu J (2014) Enhanced antibacterial activity of silver nanoparticles/halloysite nanotubes/graphene nanocomposites with sandwich-like structure. Sci Rep 4:4551CrossRefGoogle Scholar
  52. 52.
    Ciobanu CS, Iconaru SL, Chifiriuc MC, Costescu A, Le Coustumer P, Predoi D (2013) Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles. Biomed Res Int 2013:916218CrossRefGoogle Scholar
  53. 53.
    Barralet J, Gbureck U, Habibovic P, Vorndran E, Gerard C, Doillon CJ (2009) Angiogenesis in calcium phosphate scaffolds by inorganic copper ion release. Tissue Eng Part A 15(7):1601–1609CrossRefGoogle Scholar
  54. 54.
    Wu C, Zhou Y, Xu M et al (2013) Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34(2):422–433CrossRefGoogle Scholar
  55. 55.
    Zhou J, Zhao L (2016) Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities. Sci Rep 6:29069CrossRefGoogle Scholar
  56. 56.
    Shie MY, Chang HC, Ding SJ (2012) Effects of altering the Si/Ca molar ratio of a calcium silicate cement on in vitro cell attachment. Int Endod J 45(4):337–345CrossRefGoogle Scholar
  57. 57.
    Zhang J, Park Y-D, Bae W-J et al (2015) Effects of bioactive cements incorporating zinc-bioglass nanoparticles on odontogenic and angiogenic potential of human dental pulp cells. J Biomater Appl 29(7):954–964CrossRefGoogle Scholar
  58. 58.
    Kargozar S, Baino F, Lotfibakhshaiesh N et al (2018) When size matters: biological response to strontium-and cobalt-substituted bioactive glass particles. Mater Today Proc 5(7):15768–15775CrossRefGoogle Scholar
  59. 59.
    Li J, Zhai D, Lv F et al (2016) Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta Biomater 36:254–266CrossRefGoogle Scholar
  60. 60.
    Kim M, Kim C, Lim Y, Heo S (2006) Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. J Biomed Mater Res Pt A 79(4):1023–1032CrossRefGoogle Scholar
  61. 61.
    Tran N, Webster TJ (2011) Increased osteoblast functions in the presence of hydroxyapatite-coated iron oxide nanoparticles. Acta Biomater 7(3):1298–1306CrossRefGoogle Scholar
  62. 62.
    Lee D, Heo DN, Kim H-J et al (2016) Inhibition of osteoclast differentiation and bone resorption by bisphosphonate-conjugated gold nanoparticles. Sci Rep 6:27336CrossRefGoogle Scholar
  63. 63.
    Yi C, Liu D, Fong C-C, Zhang J, Yang M (2010) Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano 4(11):6439–6448CrossRefGoogle Scholar
  64. 64.
    Lin K, Liu P, Wei L et al (2013) Strontium substituted hydroxyapatite porous microspheres: surfactant-free hydrothermal synthesis, enhanced biological response and sustained drug release. Chem Eng J 222:49–59CrossRefGoogle Scholar
  65. 65.
    Yang F, Dong W, He F, Wang X, Zhao S, Yang G (2012) Osteoblast response to porous titanium surfaces coated with zinc-substituted hydroxyapatite. Oral Surg Oral Med Oral Pathol Oral Radiol 113(3):313–318CrossRefGoogle Scholar
  66. 66.
    Mo A, Liao J, Xu W, Xian S, Li Y, Bai S (2008) Preparation and antibacterial effect of silver–hydroxyapatite/titania nanocomposite thin film on titanium. Appl Surf Sci 255(2):435–438CrossRefGoogle Scholar
  67. 67.
    Kargupta R, Bok S, Darr CM, Crist BD, Gangopadhyay K, Gangopadhyay S, Sengupta S (2014) Coatings and surface modifications imparting antimicrobial activity to orthopedic implants. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6(5):475–495CrossRefGoogle Scholar
  68. 68.
    Kilgus DJ, Howe DJ, Strang A (2002) Results of periprosthetic hip and knee infections caused by resistant bacteria. Clin Orthop Relat Res 404:116–124CrossRefGoogle Scholar
  69. 69.
    Page K, Wilson M, Parkin IP (2009) Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospitalacquired infections. J Mater Chem 19:3819–3831CrossRefGoogle Scholar
  70. 70.
    Park KD, Kim YS, Han DK, Kim YH, Lee EHB, Suh H, Choi KS (1998) Bacterial adhesion on PEG mod- ified polyurethane surfaces. Biomaterials 19:851–859CrossRefGoogle Scholar
  71. 71.
    Bridges AW, García AJ (2008) Anti-inflammatory polymeric coatings for implantable biomaterials and devices. J Diabetes Sci Technol 2:984–994CrossRefGoogle Scholar
  72. 72.
    Gao G, Yu K, Kindrachuk J, Brooks DE, Hancock RE, Kizhakkedathu JN (2011) Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Biomacromolecules 12(10):3715–3727CrossRefGoogle Scholar
  73. 73.
    Kazemzadeh-Narbat M, Noordin S, Masri BA, Garbuz DS, Duncan CP, Hancock Robert EW, Wang R (2012) Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium. J Biomed Mater Res Pt B 2012(00B):000–000Google Scholar
  74. 74.
    Kazemzadeh-Narbat M, Kindrachuk J, Duan K, Jenssen H, Hancock RE, Wang R (2010) Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials 31(36):9519–9526CrossRefGoogle Scholar
  75. 75.
    Bayramov DF, Neff JA (2017) Beyond conventional antibiotics—new directions for combination products to combat biofilm. Adv Drug Deliv Rev 112:48–60. Scholar
  76. 76.
    Tan H, Ma R, Lin C, Liu Z, Tang T (2013) Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics. Int J Mol Sci 14(1):1854–1869CrossRefGoogle Scholar
  77. 77.
    Yoshinari M, Oda Y, Kato T, Okuda K (2001) Influence of surface modifications to titanium on antibacterial activity in vitro. Biomaterials 22:2043–2048CrossRefGoogle Scholar
  78. 78.
    Tsuchiya H, Shirai T, Nishida H, Murakami H, Kabata T, Yamamoto N, Watanabe K, Nakase J (2012 Sep 1) Innovative antimicrobial coating of titanium implants with iodine. J Orthop Sci 17(5):595–604CrossRefGoogle Scholar
  79. 79.
    Montanaro L, Speziale P, Campoccia D, Ravaioli S, Cangini I, Pietrocola G, Giannini S, Arciola CR (2011) Scenery of Staphylococcus implant infections in ortho- pedics. Future Microbiol 6:1329–1349CrossRefGoogle Scholar
  80. 80.
    Colon G, Ward BC, Webster TJ (2006) Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J Biomed Mater Res A 78:595–604CrossRefGoogle Scholar
  81. 81.
    Ren G, Hu D, Cheng EW, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590CrossRefGoogle Scholar
  82. 82.
    Campoccia D, Montanaro L, Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27(11):2331–2339CrossRefGoogle Scholar
  83. 83.
    Barrère F, Layrolle P, van Blitterswijk CA, de Groot K (2001) Biomimetic coatings on titanium: a crystal growth study of octacalcium phosphate. J Mater Sci Mater Med 12:529–534CrossRefGoogle Scholar
  84. 84.
    Shadanbaz S, Dias GJ (2012) Calcium phosphate coatings on magnesium alloys for biomedical applications: a review. Acta Biomater 8:20–30CrossRefGoogle Scholar
  85. 85.
    Blom E, Klein-Nulend J, Wolke J, Van Waas M, Driessens F, Burger E (2002) Transforming growth factor-𝛽1 incorporation in a calcium phosphate bone cement: material properties and release characteristics. J Biomed Mater Res 59:265–272CrossRefGoogle Scholar
  86. 86.
    Sumner DR, Turner TM, Urban RM, Turek T, Sherman H, Wozney JM (2004) Locally delivered rhBMP-2 enhances bone ingrowth and gap healing in a canine model. J Orthop Res 22:58–65CrossRefGoogle Scholar
  87. 87.
    Bernhardt R, van den Dolder J, Bierbaum S, Beutner R, Scharnweber D, Jansen J, Beckmann F, Worch H (2005) Osteoconductive modifications of Ti-implants in a goat defect model: characterization of bone growth with SR muCT and histology. Biomaterials 26:3009–3019CrossRefGoogle Scholar
  88. 88.
    Rammelt S, Illert T, Bierbaum S, Scharnweber D, Zwipp H, Schneiders W (2006) Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials 27:5561–5571CrossRefGoogle Scholar
  89. 89.
    Van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305(3):285–298CrossRefGoogle Scholar
  90. 90.
    Petrie TA, Raynor JE, Reyes CD, Burns KL, Collard DM, García AJ (2008) The effect of integrin- specific bioactive coatings on tissue healing and implant osseointegration. Biomaterials 29(19):2849–2857CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Huebsch N, Arany PR, Mao AS, Shvartsman D, Ali OA, Bencherif SA et al (2010) Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate. Nat Mater 9(6):518CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Uskoković V, Hoover C, Vukomanović M, Uskoković DP, Desai TA (2013) Osteogenic and antimicrobial nanoparticulate calcium phosphate and poly-(D, L-lactide-co-glycolide) powders for the treatment of osteomyelitis. Mater Sci Eng C 33(6):3362–3373CrossRefGoogle Scholar
  93. 93.
    Ducheyne P, Mauck RL, Smith DH (2012) Biomaterials in the repair of sports injuries. Nat Mater 11:652–654CrossRefGoogle Scholar
  94. 94.
    Issa JP, Bentley M, Iyomasa VMM, Sebald W, De Albuquerque RF (2008) Sustained release carriers used to delivery bone morphogenetic proteins in the bone healing process. Anat Histol Embryol 2008(37):181–187CrossRefGoogle Scholar
  95. 95.
    Hensleea AM, Specera PP, Yoon DM, Naira MB, Meretoja VV (2011) Biodegradable composite scaffolds incorporating an intramedullary rod and delivering bone morphogenetic protein-2 for stabilization in segmental long bone defects. Acta Biomater 7:3627–3637CrossRefGoogle Scholar
  96. 96.
    Petrovic V, Zivkovic P, Petrovic D, Stefanovic V (2006) Craniofacial bone tissue engineering. Dent Clin N Am 50:175–190CrossRefGoogle Scholar
  97. 97.
    Karnik S, Mills DK (2015) Nanoenhanced hydrogel system with sustained release capabilities. J Biomed Mat Pt A 103(7):2416–2426CrossRefGoogle Scholar
  98. 98.
    Karnik S, Jammalamadaka UM, Tappa K, Mills DK (2016) Performance evaluation of nanoclay enriched antimicrobial hydrogels for biomedical applications. Heliyon 2:e00072. Scholar
  99. 99.
    Jammalamadaka U, Tappa K, Mills DK (2018) Calcium phosphate/clay nanotube bone cement with enhanced mechanical properties and sustained drug release. In: Zoveidavianpoor M (ed) Clay science and engineering. InTech, Zagreb, CroatiaGoogle Scholar
  100. 100.
    Patel S, Jammalamadaka U, Sun L, Tappa K, Mills DK (2015) Sustained Release of Antibacterial Agents from Doped Halloysite Nanotubes. Bioengineering (Basel) 3(1):1. Scholar
  101. 101.
    Wei W, Minullina R, Abdullayev E, Fakhrullin R, Mills D, Lvov Y (2014) Enhanced efficiency of antiseptics with sustained release from clay nanotubes. RSC Adv 4:488–494CrossRefGoogle Scholar
  102. 102.
    Mills DK, Tappa K, Jammalamadaka UM, Mills PAS, Alexander JS, Weisman JA (2018) Chapter 8. Medical applications for 3D printing. In: Bar-Cohen Y (ed) Advances in manufacturing and processing of materials and structures. CRC, Taylor & Francis Group, Boca Rotan, FLGoogle Scholar
  103. 103.
    El-Rashidy A, Roether J, Hrhaus L, Kneser U, Boccinni A (2017) Regenerating bone with bioactive glass scaffolds: a review of in vivo studies in bone defect models. Acta Biomater 62:1–28. Epub 2017 Aug 24CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Sawkins M, Mistry Brown P, Shakesheff K, Bonassar J, Yang J (2015) Cell and protein compatible 3D bioprinting of mechanically strong constructs for bone repair. Biofabrication 7:035004CrossRefGoogle Scholar
  105. 105.
    Zhao F, Xie W, Zhang W, Fu X, Gao W, Lei B, Chen X (2018) 3D Printing nanoscale bioactive glass scaffolds enhance osteoblast migration and extramembranous oosteogenesis through stimulating immunomodulation. Adv Healthc Mater 7(16):e1800361. Epub 2018 Jun 27CrossRefPubMedGoogle Scholar
  106. 106.
    Murphy C, Kolan KCR, Long M, Li W, Leu MC, Semon JA, Day DE (2016) 3D printing of a polymer bioactive glass composite for bone repair. In: Solid Freedom Fabrication 2016: Proceedings of the 27th Annual International Solid Freedom Fabrication SymposiumGoogle Scholar
  107. 107.
    Bergmann C, Lindner M, Zhang W, Koczur K, Kirsten A, Telle R, Fischer H (2010) 3D printing of bone substitute implants using calcium phosphate and bioactive glasses. J Eur Ceram Soc 30(12):2563–2567CrossRefGoogle Scholar
  108. 108.
    Kolana K, Liuae Y, JakebBaldridge J, Murphy C, Semon J, Day D, Leu D (2017) Solvent based 3D printing of biopolymer/bioactive glass composite and hydrogel for tissue engineering applications. Proc CIRP 65:38–43CrossRefGoogle Scholar
  109. 109.
    Zhang J, Chen Y, Jing Y, Wang J, Li C, Wang L (2018) Tissue engineering using 3D printed nano-bioactive glass loaded with NELL1 gene for repairing alveolar bone defects. Regener Biomater 5:213–220. Scholar
  110. 110.
    Ma H, Feng C, Chang J, Wu C (2018) 3D-printed bioceramic scaffolds: from bone tissue engineering to tumor therapy. Acta Biomater 79:3759. Epub 2018 Aug 28CrossRefGoogle Scholar
  111. 111.
    Inzana JA, Trombetta RP, Schwarz EM, Kates SL, Awad HA (2015) 3D printed bioceramics for dual antibiotic delivery to treat implant-associated bone infection. Eur Cell Mater 30:232–247. (Published 2015 Nov 4. 121)CrossRefGoogle Scholar
  112. 112.
    Zuniga J (2018) 3D printed antibacterial prostheses. Appl Sci 8:1651CrossRefGoogle Scholar
  113. 113.
    Liaw CY, Guvendiren M (2017) Current and emerging applications of 3D printing in medicine. Biofabrication 9:024102CrossRefGoogle Scholar
  114. 114.
    Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK (2015) 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C 47:237–247CrossRefGoogle Scholar
  115. 115.
    Cheng H, Chabok R, Guan X, Chawla Y, Li A, Khademhosseini, A, Jang H (2018) Synergistic interplay between the two major bone minerals, hydroxyapatite and whitlockite nanoparticles, for osteogenic differentiation of mesenchymal stem cells, Acta Biomater. 69: 342–351.Google Scholar
  116. 116.
    Mok S-W, Nizak R, Fu S-C, Ho K-WK, Qin L, Saris DBF, Chan KM, Malda J (2016) From the printer: potential of three-dimensional printing for orthopaedic applications. J Orthop Transl 6:42–49Google Scholar
  117. 117.
    Wang X, Ao Q, Tian X, Fan J, Wei Y, Hou W, Tong H, Bai S (2016) 3D bioprinting technologies for hard tissue and organ engineering. Materials 9(10):802CrossRefGoogle Scholar
  118. 118.
    Kim BS, Jang J, Chae S, Gao G, Kong J-S, Ahn M, Cho D-W (2016) Three dimensional bioprinting of cell-laden constructs with polycaprolactone protective layers for using various thermoplastic polymers. Biofabrication 8(3):035013CrossRefGoogle Scholar
  119. 119.
    Mills DK, Tappa K, Jammalamadaka U, Weisman JA, Woerner RJ (2018) The use of 3D printing in the fabrication of nasal stents. Inventions 3:1. Scholar
  120. 120.
    Horst DJ, Tebcherani SM, Kubaski ET, de Almeida Vieira R (2017) Bioactive potential of 3Dprinted oleo-gum-resin disks: B. papyrifera, C. myrrha, and S. benzoin loading nanooxides-TiO2, P25, Cu2O, and MoO3. Bioinorg Chem Appl 2017:6398167CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Boyer CJ, Ballard DH, Weisman JA, Hurst S, McGee DJ, Mills DK, Woerner JE, Jammalamadaka U, Tappa K, Alexander JS (2018) Three dimensional printing antimicrobial and radiopaque constructs. 3D Print Add Manuf 5(1):29–35CrossRefGoogle Scholar
  122. 122.
    Weisman J, Ballard D, Jammalamadaka U, Tappa K, Dagostino H, Mills DK, Woodard P (2018) 3D printed antibiotic and chemotherapeutic eluting catheters for potential use in interventional radiology: in vitro proof of concept study. Acad Radiol 26(2):270–274CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Tappa K, Jammalamadaka U, Weisman JA, Ballard DH, Wolford DD, Pascual-Garrido C, Wolford LM, Woodard PK, Mills DK (2019) 3D printing custom bioactive and absorbable surgical screws, pins, and bone plates for localized drug delivery. J Funct Biomater 10:17. Scholar
  124. 124.
    Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):396–406CrossRefGoogle Scholar
  125. 125.
    Zhang Y, Zhai D, Xu M, Yao Q, Chang J, Wu C (2017) 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity. Biofabrication 9(2):025037. Scholar
  126. 126.
    Correia TR, Figueira DR, de Sá KD, Miguel SP, Fradique RG, Mendonça AG, Correia IJ (2016) 3D Printed scaffolds with bactericidal activity aimed for bone tissue regeneration. Int J Biol Macromol 93(Pt B):1432–1445. Epub 2016 Jun 3CrossRefPubMedGoogle Scholar
  127. 127.
    Martin V, Ribeiroa I, Alves M, Concalves L, Claudio R et al (2019) Engineering a multifunctional 3D-printed PLA-collagen-minocyclinenanohydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration. Mater Sci Eng C 101:15–26CrossRefGoogle Scholar
  128. 128.
    Aldrich A, Kuss M, Duan B, Kielian T (2019) 3D bioprinted scaffolds containing viable macrophages and antibiotics promote clearance of Staphylococcus aureus craniotomy-associated biofilm infection. ACS Appl Mater Interfaces 11(13):12298–12307. Epub 2019 Mar 21CrossRefGoogle Scholar
  129. 129.
    Alfredo N, Dorronsoro A, Cortajarena AL, Rodríguez-Hernández J (2017) Antimicrobial 3D porous scaffolds prepared by additive manufacturing and breath figures. ACS Appl Mater Interfaces 9:37454–37462CrossRefGoogle Scholar
  130. 130.
    Vargas-Alfredo N, Reinecke H, Gallardo A, del Campo A, RodríguezHernández J (2018) Fabrication of 3D printed objects with controlled surface chemistry and topography. Eur Polym J 98:21–27CrossRefGoogle Scholar
  131. 131.
    Chen Q, Mangadlao JD, Wallat J, De Leon A, Pokorski JK, Advincula RC (2017) 3D printing biocompatible polyurethane/poly(lactic acid)/graphene oxide nanocomposites: anisotropic properties. ACS Appl Mater Interfaces 9:4015–4023CrossRefGoogle Scholar
  132. 132.
    Tiimob BJ, Mwinyelle G, Abdela W, Samuel T, Jeelani S, Rangari VK (2017) Nanoengineered eggshell-silver tailored copolyester polymer blend film with antimicrobial properties. J Agric Food Chem 65:1967–1976CrossRefGoogle Scholar
  133. 133.
    Totu EE, Nechifor AC, Nechifor G, Aboul-Enein HY, Cristache CM (2017) Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolitographic complete denture manufacturing—the future in dental care for elderly edentulous patients? J Dent 59:68–77CrossRefGoogle Scholar
  134. 134.
    González-Henríquez CM, Sarabia-Vallejos MA, Rodríguez HJ (2019) Antimicrobial polymers for additive manufacturing. Int J Mol Sci 20(5):1210. Published 2019 Mar 10. Scholar
  135. 135.
    Lim S, Kathuria H, Tan J, Kang L (2018) 3D printed drug delivery and testing systems—a passing fad or the future? Adv Drug Deliv Rev 132:139–168CrossRefGoogle Scholar
  136. 136.
    Park S-H, Jung CS, Min B-H (2016) Advances in three-dimensional bioprinting for hard tissue engineering. Tissue Eng Regen Med 13(6):622–635CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anusha Elumalai
    • 1
  • Yangyang Lou
    • 1
  • Ahmed Humayun
    • 1
  • A. J. McFarland
    • 1
  • David K. Mills
    • 2
    • 3
    Email author
  1. 1.Molecular Science and NanotechnologyLouisiana Tech UniversityRustonUSA
  2. 2.Biomedical EngineeringLouisiana Tech UniversityRustonUSA
  3. 3.School of Biological SciencesLouisiana Tech UniversityRustonUSA

Personalised recommendations