Antibacterial Polymeric and Peptide Gels/Hydrogels to Prevent Biomaterial-Related Infections

  • Kamal Malhotra
  • Yashveer SinghEmail author


The emerging threat of antibiotic resistance in pathogenic microbes is a menace to public health. The situation is equally alarming so far as biomaterial-related infections resulting from implantation are concerned. Antibiotics were considered effective in treating bacterial infections and saved millions of lives from infection but the repeated use of antibiotics has led to the development of resistance in microbes. Several strategies have been developed to address the challenge of antibiotic resistance in bacteria. Examples include the use of antiseptics, antiadhesives, metal ions and nanoparticles, carbon nanotubes, graphene and graphene oxide, antimicrobial peptides, and antimicrobial polymers. Even though these approaches offer varying degree of success, they are also associated with serious limitations. Consequently, scientists have focused their efforts toward the development of self-assembled peptide and polymeric gels/hydrogels, as antibacterial biomaterials, to address the challenge of antibiotic resistance in bacteria. This chapter provides a critical review of the developments in the field of antibacterial self-assembled peptides and polymeric gels/hydrogels for treating biomaterial-related infections.


Antibacterial Antibiotic resistance Bacterial infection Biomaterial-related infection Polymeric hydrogel Self-assembled peptide gel 



Silicon tetrachloride

A. baumannii

Acinetobacter baumannii




Silver nanoparticles




Antimicrobial peptides


n-butyl methacrylate


Bacterial polysaccharide

C. albicans

Candida albicans


Colony-forming units/decimeter square


Colony-forming units per milliliter




Carboxymethyl chitosan/oxidized dextran


Carboxylated cellulose nanofiber


Ceftriaxone sodium


Dimethyl sulfoxide

E. coli

Escherichia coli

E. faecalis

Enterococcus faecalis






Extracellular polymeric substances

F. solani

Fusarium solani


Food and Drug Administration USA




Graphene oxide




Human mesenchymal stem cells


Human red blood cells


High-resolution transmission electron microscopy

K. pneumonia

Klebsiella pneumonia



L. ivanovii

Listeria ivanovii

M. smegmatis

Mycobacterium smegmatis

M. tuberculosis

Mycobacterium tuberculosis




Multidrug resistance


Methicillin-resistant S. aureus


Multiwalled carbon nanotubes


Natural cashew gum







P. aeruginosa

Pseudomonas aeruginosa

P. gingivalis

Porphyromonas gingivalis






Poly(2-((2-hydroxyethyl) (2-(methacryloyloxy) ethyl) (methyl) ammonio) acetate


Poly(2-(bis(2-hydroxyethyl) (2-(methacryloyloxy)ethyl) ammonio) acetate)


Poly(2-dimethylamino) ethylmethacrylate


Pandrug resistance


Polyethylene glycol


Poly(ethylene glycol) diacrylate


Poly(ether sulfone)


Polyethylene terephthalate

PF 127

Pluronic F-127


Polyhexamethylene biguanide


Poly(l-lactide)-b-poly(ethylene glycol)-b-poly(lactide)




Quaternary ammonium compounds


Quaternized chitosan


Red blood cells


Rat bone mesenchymal stem cell


Reduced graphene oxide


Reactive oxygen species

S. aureus

Staphylococcus aureus

S. epidermidis

Staphylococcus epidermidis

S. mutans

Streptococcus mutans

S. pyogenes

Streptococcus pyogenes


Scanning electron microscopy


Strain-promoted alkyne–azide cycloaddition


Single-wall carbon nanotubes




World Health Organization


Extensively drug resistant



We gratefully acknowledge our students (PhD, MSc, and MTech) and colleagues who contributed to this work and the financial support to YS from the CSIR, New Delhi (grant # 02(0245)/15/EMR-II) and SERB, New Delhi (grant # EMR/2017/000045).


  1. 1.
    (2008) The global burden of disease: 2004 update. World Health Organization, Geneva, SwitzerlandGoogle Scholar
  2. 2.
    Laxminarayan R, Chaudhury RR (2016) Antibiotic resistance in India: drivers and opportunities for action. PLoS Med 13(3):e1001974PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kumar SG, Adithan C, Harish B, Roy G, Malini A, Sujatha S (2013) Antimicrobial resistance in India: a review. J Nat Sci Biol Med 4(2):286PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ventola CL (2015) The antibiotic resistance crisis. P&T 40(4):277–283Google Scholar
  5. 5.
    Gupta A, Mumtaz S, Li C-H, Hussain I, Rotello VM (2019) Combatting antibiotic-resistant bacteria using nanomaterials. Chem Soc Rev 48(2):415–427PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Cooper IR (2015) Introduction to biomaterials and medical device-associated infections. In: Barnes L, Cooper IR (Eds) Biomaterials and Medical Device – Associated Infections. pp 3–17Google Scholar
  7. 7.
    Busscher HJ, van der Mei HC, Subbiahdoss G, Jutte PC, van den Dungen JJ, Zaat SA et al (2012) Biomaterial-associated infection: locating the finish line in the race for the surface. Sci Transl Med 4:153rv10PubMedCrossRefGoogle Scholar
  8. 8.
    Wolfmeier H, Pletzer D, Mansour SC, Hancock REW (2018) New perspectives in biofilm eradication. ACS Infect Dis 4:93–106PubMedCrossRefGoogle Scholar
  9. 9.
    Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633PubMedPubMedCentralGoogle Scholar
  10. 10.
    Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199PubMedCrossRefGoogle Scholar
  11. 11.
    Roilides E, Walsh TJ, Simitsopoulou M, Katragkou A (2015) How biofilms evade host defenses. In: Mukherjee PK, Ghannoum M, Whiteley M, Parsek M (eds) Microbial biofilms, 2nd edn. American Society of Microbiology, pp 287–300Google Scholar
  12. 12.
    Boucher HW, Talbot GH, Bradley JS et al (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48(1):1–12PubMedCrossRefGoogle Scholar
  13. 13.
    Paramythiotou E, Routsi C (2016) Association between infections caused by multidrug-resistant gram-negative bacteria and mortality in critically ill patients. World J Crit Care Med 5(2):111PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Ciofu O, Rojo-Molinero E, Macià MD, Oliver A (2017) Antibiotic treatment of biofilm infections. APMIS 125(4):304–319PubMedCrossRefGoogle Scholar
  15. 15.
    Deresinski S (2009) Vancomycin in combination with other antibiotics for the treatment of serious methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis 49(7):1072–1079PubMedCrossRefGoogle Scholar
  16. 16.
    Gaynes R (2017) The discovery of Penicillin—new insights after more than 75 years of clinical use. Emerg Infect Dis 23(5):849–853CrossRefGoogle Scholar
  17. 17.
    Kapoor G, Saigal S, Elongavan A (2017) Action and resistance mechanisms of antibiotics: a guide for clinicians. J Anaesthesiol Clin Pharmacol 33(3):300PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Petchiappan A, Chatterji D (2017) Antibiotic resistance: current perspectives. ACS Omega 2(10):7400–7409PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Elbossaty WF (2017) Antibiotic drugs and multidrug resistance bacteria. Int J Pub Health Safe 2(3):3Google Scholar
  20. 20.
    Tangcharoensathien V, Sattayawutthipong W, Kanjanapimai S et al. (2017) Antimicrobial resistance: from global agenda to national strategic plan. Thailand Bull World Health Organ 95(8):599–603Google Scholar
  21. 21.
    Magiorakos A-P, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10(3):226–236PubMedCentralGoogle Scholar
  23. 23.
    Walsh W (2005) Introduction: antibiotic resistance. Chem Rev 105(2):391–394PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gimeno M, Pinczowski P, Pérez M et al (2015) A controlled antibiotic release system to prevent orthopedic-implant associated infections: an in vitro study. Eur J Pharm Biopharm 96:264–271PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Albright V, Zhuk I, Wang Y et al (2017) Self-defensive antibiotic-loaded layer-by-layer coatings: imaging of localized bacterial acidification and pH-triggering of antibiotic release. Acta Biomater 61:66–74PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    (2007) Premarket notification [510(k)] submissions for medical devices that include antimicrobial agents—draft guidance for industry and FDA staff. 510:1–18Google Scholar
  27. 27.
    Science History Institute. (2017). Gerhard Domagk.
  28. 28.
    Mcdonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12:33CrossRefGoogle Scholar
  29. 29.
    Iqbal A (2012) Antimicrobial irrigants in the endodontic therapy. Int J Health Sci 6(2):1–7CrossRefGoogle Scholar
  30. 30.
    Gadea R, Glibota N, Pérez Pulido R, Gálvez A, Ortega E (2017) Adaptation to biocides cetrimide and chlorhexidine in Bacteria from organic foods: association with tolerance to other antimicrobials and physical stresses. J Agric Food Chem 65(8):1758–1770PubMedCrossRefGoogle Scholar
  31. 31.
    Ong YL, Razatos A, Georgiou G, Sharma MM (1999) Adhesion forces between E. coli Bacteria and biomaterial surfaces. Langmuir 15(8):2719–2725CrossRefGoogle Scholar
  32. 32.
    Thebault P, Jouenne T (2015) The battle against microbial pathogens: basic science, technological advances and educational programs. ISBN-13 Vol. 1: 978-84-942134-6-5Google Scholar
  33. 33.
    Dong B, Manolache S, Wong ACL, Denes FS (2011) Antifouling ability of polyethylene glycol of different molecular weights grafted onto polyester surfaces by cold plasma. Polym Bull 66(4):517–528CrossRefGoogle Scholar
  34. 34.
    Rendueles O, Kaplan JB, Ghigo J-M (2013) Antibiofilm polysaccharides. Environ Microbiol 15(2):334–346PubMedCrossRefGoogle Scholar
  35. 35.
    Muszanska AK, Rochford ETJ, Gruszka A et al (2014) Antiadhesive polymer brush coating functionalized with antimicrobial and RGD peptides to reduce biofilm formation and enhance tissue integration. Biomacromolecules 15(6):2019–2026PubMedCrossRefGoogle Scholar
  36. 36.
    Jiang P, Li J, Han F, Duan G, Lu X, Gu Y et al (2011) Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS One 6:e18514PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Rendueles O, Travier L, Latour-Lambert P, Fontaine T, Magnus J, Denamur E et al (2011) Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharides. mBio 2:e00043–e00011PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Qin Z, Yang L, Qu D, Molin S, Tolker-Nielsen T (2009) Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis. Microbiology 155:2148–2156PubMedCrossRefGoogle Scholar
  39. 39.
    Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed 52(6):1636–1653CrossRefGoogle Scholar
  40. 40.
    Rupp ME, Fitzgerald T, Marion N et al (2004) Effect of silver-coated urinary catheters: efficacy, cost-effectiveness, and antimicrobial resistance. Am J Infect Control 32(8):445–450PubMedCrossRefGoogle Scholar
  41. 41.
    Rigo C, Ferroni L, Tocco I et al (2013) Active silver nanoparticles for wound healing. Int J Mol Sci 14(3):4817–4840PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Stevens KNJ, Croes S, Boersma RS et al (2011) Hydrophilic surface coatings with embedded biocidal silver nanoparticles and sodium heparin for central venous catheters. Biomaterials 32(5):1264–1269PubMedCrossRefGoogle Scholar
  43. 43.
    Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32CrossRefGoogle Scholar
  44. 44.
    Matsumura Y, Yoshikata K, Kunisaki S-I, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69(7):4278–4281PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Panáček A, Kvítek L, Smékalová M et al (2018) Bacterial resistance to silver nanoparticles and how to overcome it. Nat Nanotechnol 13(1):65–71PubMedCrossRefGoogle Scholar
  46. 46.
    Greulich C, Braun D, Peetsch A et al (2012) The toxic effect of silver ions and silver nanoparticles towards bacteria and human cells occurs in the same concentration range. RSC Adv 2(17):6981CrossRefGoogle Scholar
  47. 47.
    Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C 44:278–284CrossRefGoogle Scholar
  48. 48.
    Ballo MKS, Rtimi S, Pulgarin C et al (2016) In vitro and in vivo effectiveness of an innovative silver-copper nanoparticle coating of catheters to prevent methicillin-resistant Staphylococcus aureus infection. Antimicrob Agents Chemother 60(9):5349–5356PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Liu R, Memarzadeh K, Chang B et al (2016) Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis. Sci Rep 6(1):29985PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Chatterjee AK, Chakraborty R, Basu T (2014) Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology 25(13):135101PubMedCrossRefGoogle Scholar
  51. 51.
    Casey AL, Adams D, Karpanen TJ et al (2010) Role of copper in reducing hospital environment contamination. J Hosp Infect 74(1):72–77PubMedCrossRefGoogle Scholar
  52. 52.
    Guo J, Gao S-H, Lu J, Bond PL, Verstraete W, Yuan Z (2017) Copper oxide nanoparticles induce lysogenic bacteriophage and metal-resistance genes in Pseudomonas aeruginosa PAO1. ACS Appl Mater Interfaces 9(27):22298–22307PubMedCrossRefGoogle Scholar
  53. 53.
    Pati R, Mehta RK, Mohanty S et al (2014) Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine 10(6):1195–1208PubMedCrossRefGoogle Scholar
  54. 54.
    Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41(12):2699–2711CrossRefGoogle Scholar
  56. 56.
    Siddiqi KS, Ur Rahman A, Tajuddin, Husen A (2018) Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Res Lett 13:141PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Li N, Su X, Lu Y (2015) Nanomaterial-based biosensors using dual transducing elements for solution phase detection. Analyst 140(9):2916–2943PubMedCrossRefGoogle Scholar
  58. 58.
    Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673PubMedCrossRefGoogle Scholar
  59. 59.
    Hirschfeld J, Akinoglu EM, Wirtz DC et al (2017) Long-term release of antibiotics by carbon nanotube-coated titanium alloy surfaces diminish biofilm formation by Staphylococcus epidermidis. Nanomedicine 13(4):1587–1593Google Scholar
  60. 60.
    Zardini HZ, Amiri A, Shanbedi M, Maghrebi M, Baniadam M (2012) Enhanced antibacterial activity of amino acids-functionalized multi walled carbon nanotubes by a simple method. Colloids Surf B: Biointerfaces 92:196–202PubMedCrossRefGoogle Scholar
  61. 61.
    Liu S, Wei L, Hao L et al (2009) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3(12):3891–3902PubMedCrossRefGoogle Scholar
  62. 62.
    Yang F, Jiang Q, Xie W, Zhang Y (2017) Effects of multi-walled carbon nanotubes with various diameters on bacterial cellular membranes: cytotoxicity and adaptive mechanisms. Chemosphere 185:162–170PubMedCrossRefGoogle Scholar
  63. 63.
    Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24(13):6409–6413PubMedCrossRefGoogle Scholar
  64. 64.
    Jia G, Wang H, Yan L et al (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5):1378–1383PubMedCrossRefGoogle Scholar
  65. 65.
    Hu W, Peng C, Luo W et al (2010) Graphene-based antibacterial paper. ACS Nano 4(7):4317–4323PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Li K, Wang C, Yan J et al (2018) Evaluation of the osteogenesis and osseointegration of titanium alloys coated with graphene: an in vivo study. Sci Rep 8(1):1843PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Yadav N, Dubey A, Shukla S et al (2017) Graphene oxide-coated surface: inhibition of bacterial biofilm formation due to specific surface–interface interactions. ACS Omega 2(7):3070–3082PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33(32):8017–8025PubMedCrossRefGoogle Scholar
  69. 69.
    Pelin M, Fusco L, León V et al (2017) Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Sci Rep 7:40572PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24(12):1551–1557PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Dean SN, Bishop BM, van Hoek ML (2011) Natural and synthetic cathelicidin peptides with anti-microbial and anti-biofilm activity against Staphylococcus aureus. BMC Microbiol 11(1):114PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Yoshinari M, Kato T, Matsuzaka K, Hayakawa T, Shiba K (2010) Prevention of biofilm formation on titanium surfaces modified with conjugated molecules comprised of antimicrobial and titanium-binding peptides. Biofouling 26(1):103–110PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Gopal R, Kim YG, Lee JH et al (2014) Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains. Antimicrob Agents Chemother 58(3):1622–1629PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lombana A, Raja Z, Casale S et al (2014) Temporin-SHa peptides grafted on gold surfaces display antibacterial activity. J Pept Sci 20(7):563–569Google Scholar
  76. 76.
    Godoy-Gallardo M, Mas-Moruno C, Fernández-Calderón MC et al (2014) Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bacterial adhesion and biofilm formation. Acta Biomater 10(8):3522–3534PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Glinel K, Jonas AM, Jouenne T, Leprince J, Galas L, Huck WTS (2009) Antibacterial and antifouling polymer brushes incorporating antimicrobial peptide. Bioconjug Chem 20(1):71–77PubMedCrossRefGoogle Scholar
  78. 78.
    Etienne O, Picart C, Taddei C et al (2004) Multilayer polyelectrolyte films functionalized by insertion of defensin: a new approach to protection of implants from bacterial colonization. Antimicrob Agents Chemother 48(10):3662–3669PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Guyomard A, Dé E, Jouenne T, Malandain J-J, Muller G, Glinel K (2008) Incorporation of a hydrophobic antibacterial peptide into amphiphilic polyelectrolyte multilayers: a bioinspired approach to prepare biocidal thin coatings. Adv Funct Mater 18(5):758–765CrossRefGoogle Scholar
  80. 80.
    Shukla A, Fleming KE, Chuang HF et al (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31(8):2348–2357PubMedCrossRefGoogle Scholar
  81. 81.
    Andrade CA (2016) Chemical immobilization of antimicrobial peptides on biomaterial surfaces. Front Biosci 8(1):129–142CrossRefGoogle Scholar
  82. 82.
    Gao G, Lange D, Hilpert K et al (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32(16):3899–3909CrossRefGoogle Scholar
  83. 83.
    Humblot V, Yala J-F, Thebault P et al (2009) The antibacterial activity of Magainin I immobilized onto mixed thiols self-assembled monolayers. Biomaterials 30(21):3503–3512PubMedCrossRefGoogle Scholar
  84. 84.
    Yala J-F, Thebault P, Héquet A, Humblot V, Pradier C-M, Berjeaud J-M (2011) Elaboration of antibiofilm materials by chemical grafting of an antimicrobial peptide. Appl Microbiol Biotechnol 89(3):623–634PubMedCrossRefGoogle Scholar
  85. 85.
    Hilpert K, Elliott M, Jenssen H et al (2009) Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol 16(1):58–69PubMedCrossRefGoogle Scholar
  86. 86.
    Onaizi SA, Leong SSJ (2011) Tethering antimicrobial peptides: current status and potential challenges. Biotechnol Adv 29(1):67–74PubMedCrossRefGoogle Scholar
  87. 87.
    Pal K, Banthia AK, Majumdar DK (2009) Polymeric hydrogels: characterization and biomedical applications. Des Monomers Polym 12(3):197–220CrossRefGoogle Scholar
  88. 88.
    Siedenbiedel F, Tiller JC (2012) Antimicrobial polymers in solution and on surfaces: overview and functional principles. Polymers 4(1):46–71CrossRefGoogle Scholar
  89. 89.
    Cornell RJ, Donaruma LG (1965) 2-Methacryloxytropones. Intermediates for the synthesis of biologically active polymers. J Med Chem 8(3):388–390PubMedCrossRefGoogle Scholar
  90. 90.
    Panarin EF, Solovskii MV, Ekzemplyarov ON (1971) Synthesis and antimicrobial properties of polymers containing quaternary ammonium groups. Pharm Chem J 5(7):406–408CrossRefGoogle Scholar
  91. 91.
    Kuroda K (2005) Amphiphilic polymethacrylate derivatives as antimicrobial agents. J Am Chem Soc 125(12):4128–4129CrossRefGoogle Scholar
  92. 92.
    Kuroki A, Sangwan P, Qu Y et al (2017) Sequence control as a powerful tool for improving the selectivity of antimicrobial polymers. ACS Appl Mater Interfaces 9(46):40117–40126PubMedCrossRefGoogle Scholar
  93. 93.
    Lin J, Chen X, Chen C et al (2018) Durably antibacterial and bacterially antiadhesive cotton fabrics coated by cationic fluorinated polymers. ACS Appl Mater Interfaces 10(7):6124–6136PubMedCrossRefGoogle Scholar
  94. 94.
    Huang K-S, Yang C-H, Huang S-L, Chen C-Y, Lu Y-Y, Lin Y-S (2016) Recent advances in antimicrobial polymers: a mini-review. Int J Mol Sci 17(9):1578PubMedCentralCrossRefPubMedGoogle Scholar
  95. 95.
    Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRefGoogle Scholar
  96. 96.
    Ng VWL, Chan JMW, Sardon H et al (2014) Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Adv Drug Deliv Rev 78:46–62PubMedCrossRefGoogle Scholar
  97. 97.
    Eslahi N, Abdorahim M, Simchi A (2016) Smart polymeric hydrogels for cartilage tissue engineering: a review on the chemistry and biological functions. Biomacromolecules 17(11):3441–3463PubMedCrossRefGoogle Scholar
  98. 98.
    De Giglio E, Cometa S, Ricci MA et al (2011) Ciprofloxacin-modified electrosynthesized hydrogel coatings to prevent titanium-implant-associated infections. Acta Biomater 7(2):882–891PubMedCrossRefGoogle Scholar
  99. 99.
    Lakes AL, Peyyala R, Ebersole JL, Puleo DA, Hilt JZ, Dziubla TD (2014) Synthesis and characterization of an antibacterial hydrogel containing covalently bound vancomycin. Biomacromolecules 15(8):3009–3018PubMedCrossRefGoogle Scholar
  100. 100.
    Wu F, Meng G, He J, Wu Y, Wu F, Gu Z (2014) Antibiotic-loaded chitosan hydrogel with superior dual functions: antibacterial efficacy and osteoblastic cell responses. ACS Appl Mater Interfaces 6(13):10005–10013PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Qi X, Wei W, Li J et al (2017) Design of Salecan-containing semi-IPN hydrogel for amoxicillin delivery. Mater Sci Eng C 75:487–494CrossRefGoogle Scholar
  102. 102.
    Zhang Y, Zhang J, Chen M, Gong H, Thamphiwatana S, Eckmann L, Gao W, Zhnag L (2016) A bioadhesive nanoparticle−hydrogel hybrid system for localized antimicrobial drug delivery. ACS Appl Mater Interfaces 8:18367–18374PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ng VWL, Ke X, Lee ALZ, Hedrick JL, Yang YY (2013) Synergistic co-delivery of membrane-disrupting polymers with commercial antibiotics against highly opportunistic bacteria. Adv Mater 25(46):6730–6736PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Shi Y, Truong VX, Kulkarni K et al (2015) Light-triggered release of ciprofloxacin from an in situ forming click hydrogel for antibacterial wound dressings. J Mater Chem B 3(45):8771–8774CrossRefGoogle Scholar
  105. 105.
    ter Boo G-JA, Arens D, Metsemakers W-J et al (2016) Injectable gentamicin-loaded thermo-responsive hyaluronic acid derivative prevents infection in a rabbit model. Acta Biomater 43:185–194PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Li Z, He C, Yuan B, Dong X, Chen X (2017) Injectable polysaccharide hydrogels as biocompatible platforms for localized and sustained delivery of antibiotics for preventing local infections. Macromol Biosci 17(4):1600347CrossRefGoogle Scholar
  107. 107.
    Hu J, Quan Y, Lai Y et al (2017) A smart aminoglycoside hydrogel with tunable gel degradation, on-demand drug release, and high antibacterial activity. J Control Release 247:145–152PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Hoque J, Bhattacharjee B, Prakash RG, Paramanandham K, Haldar J (2018) Dual function injectable hydrogel for controlled release of antibiotic and local antibacterial therapy. Biomacromolecules 19(2):267–278PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Varaprasad K, Mohan YM, Vimala K, Mohana Raju K (2011) Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application. J Appl Polym Sci 121(2):784–796CrossRefGoogle Scholar
  110. 110.
    González-Sánchez MI, Perni S, Tommasi G et al (2015) Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Mater Sci Eng C 50:332–340CrossRefGoogle Scholar
  111. 111.
    Noimark S, Weiner J, Noor N et al (2015) Dual-mechanism antimicrobial polymer-ZnO nanoparticle and crystal violet-encapsulated silicone. Adv Funct Mater 25(9):1367–1373CrossRefGoogle Scholar
  112. 112.
    GhavamiNejad A, Park CH, Kim CS (2016) In situ synthesis of antimicrobial silver nanoparticles within antifouling Zwitterionic hydrogels by Catecholic Redox chemistry for wound healing application. Biomacromolecules 17(3):1213–1223PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Lustosa A, de Jesus Oliveira A, Quelemes P et al (2017) In situ synthesis of silver nanoparticles in a hydrogel of Carboxymethyl cellulose with Phthalated-cashew gum as a promising antibacterial and healing agent. Int J Mol Sci 18(11):2399PubMedCentralCrossRefGoogle Scholar
  114. 114.
    He M, Wang Q, Wang R, Xie Y, Zhao W, Zhao C (2017) Design of antibacterial poly(ether sulfone) membranes via covalently attaching hydrogel thin layers loaded with Ag nanoparticles. ACS Appl Mater Interfaces 9(19):15962–15974PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Yang W, Fortunati E, Bertoglio F et al (2018) Polyvinyl alcohol/chitosan hydrogels with enhanced antioxidant and antibacterial properties induced by lignin nanoparticles. Carbohydr Polym 181:275–284PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Liu R, Dai L, Si C, Zeng Z (2018) Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr Polym 195:63–70PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Richards S-J, Isufi K, Wilkins LE, Lipecki J, Fullam E, Gibson MI (2018) Multivalent antimicrobial polymer nanoparticles target mycobacteria and Gram-negative Bacteria by distinct mechanisms. Biomacromolecules 19(1):256–264PubMedCrossRefGoogle Scholar
  118. 118.
    Jiang B, Larson JC, Drapala PW, Pérez-Luna VH, Kang-Mieler JJ, Brey EM (2012) Investigation of lysine acrylate containing poly(N-isopropylacrylamide) hydrogels as wound dressings in normal and infected wounds. J Biomed Mater Res B Appl Biomater 100B(3):668–676CrossRefGoogle Scholar
  119. 119.
    Laverty G, Gorman SP, Gilmore BF (2012) Antimicrobial peptide incorporated poly(2-hydroxyethyl methacrylate) hydrogels for the prevention of Staphylococcus epidermidis-associated biomaterial infections. J Biomed Mater Res A 100A(7):1803–1814CrossRefGoogle Scholar
  120. 120.
    Buhrman JS, Cook LC, Rayahin JE, Federle MJ, Gemeinhart RA (2013) Proteolytically activated antibacterial hydrogel microspheres. J Control Release 171(3):288–295PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Du H, Wang Y, Yao X et al (2016) Injectable cationic hydrogels with high antibacterial activity and low toxicity. Polym Chem 7(36):5620–5624CrossRefGoogle Scholar
  122. 122.
    Aziz MA, Cabral JD, Brooks HJL, Moratti SC, Hanton LR (2012) Antimicrobial properties of a chitosan dextran-based hydrogel for surgical use. Antimicrob Agents Chemother 56(1):280–287PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Li P, Poon YF, Li W et al (2011) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10(2):149–156PubMedCrossRefGoogle Scholar
  124. 124.
    Tsao CT, Chang CH, Lin YY et al (2011) Evaluation of chitosan/γ-poly (glutamic acid) polyelectrolyte complex for wound dressing materials. Carbohydr Polym 84(2):812–819CrossRefGoogle Scholar
  125. 125.
    Li M, Mitra D, Kang E-T, Lau T, Chiong E, Neoh KG (2017) Thiol-ol chemistry for grafting of natural polymers to form highly stable and efficacious antibacterial coatings. ACS Appl Mater Interfaces 9(2):1847–1857PubMedCrossRefGoogle Scholar
  126. 126.
    Mukherjee I, Ghosh A, Bhadury P, De P (2017) Side-chain amino acid-based cationic antibacterial polymers: investigating the morphological switching of a polymer-treated bacterial cell. ACS Omega 2(4):1633–1644PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Mukherjee I, Ghosh A, Bhadury P, De P (2018) Leucine-based polymer architecture-induced antimicrobial properties and bacterial cell morphology switching. ACS Omega 3(1):769–780PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Liu SQ, Yang C, Huang Y et al (2012) Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly (ethylene glycol) via Michael addition. Adv Mater 24(48):6484–6489PubMedCrossRefGoogle Scholar
  129. 129.
    Li Y, Fukushima K, Coady DJ et al (2013) Broad-spectrum antimicrobial and biofilm-disrupting hydrogels: stereocomplex-driven supramolecular assemblies. Angew Chem Int Ed 52(2):674–678CrossRefGoogle Scholar
  130. 130.
    Cao B, Tang Q, Li L et al (2013) Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties. Adv Healthc Mater 2(8):1096–1102PubMedCrossRefGoogle Scholar
  131. 131.
    Gaetano G, Giuseppe P, Salvatore PF, Susanna M, Sara S, Luca RC (2018) Hyaluronic-based antibacterial hydrogel coating for implantable biomaterials in orthopedics and trauma: from basic research to clinical applications. In: Haider S, Haider A (eds) Hydrogels. InTechGoogle Scholar
  132. 132.
    Habibi N, Kamaly N, Memic A, Shafiee H (2016) Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery. Nano Today 11(1):41–60PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Zhang S, Lockshin C, Herbert A, Winter E, Rich A (1992) Zuotin, a putative Z-DNA binding protein in Saccharomyces cerevisiae. EMBO J 11(10):3787–3796PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Holmest T, Lockshin C, Rich A (1993) Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A 90(8):3334–3338CrossRefGoogle Scholar
  135. 135.
    Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16(18):1385–1393PubMedCrossRefGoogle Scholar
  136. 136.
    Zhang S, Lockshin C, Cook R, Rich A (1994) Unusually stable β-sheet formation in an ionic self-complementary oligopeptide. Biopolymers 34(5):663–672PubMedCrossRefGoogle Scholar
  137. 137.
    Kisiday J, Jin M, Kurz B et al (2002) Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci 99(15):9996–10001PubMedCrossRefGoogle Scholar
  138. 138.
    Salick DA, Kretsinger JK, Pochan DJ, Schneider JP (2007) Inherent antibacterial activity of a peptide-based β-hairpin hydrogel. J Am Chem Soc 129(47):14793–14799PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Salick DA, Pochan DJ, Schneider JP (2009) Design of an Injectable β-hairpin peptide hydrogel that kills methicillin-resistant Staphylococcus aureus. Adv Mater 21(41):4120–4123CrossRefGoogle Scholar
  140. 140.
    Veiga AS, Sinthuvanich C, Gaspar D, Franquelim HG, Castanho MARB, Schneider JP (2012) Arginine-rich self-assembling peptides as potent antibacterial gels. Biomaterials 33(35):8907–8916PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Zhou C, Li P, Qi X et al (2011) A photopolymerized antimicrobial hydrogel coating derived from epsilon-poly-l-lysine. Biomaterials 32(11):2704–2712PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Liu Y, Yang Y, Wang C, Zhao X (2013) Stimuli-responsive self-assembling peptides made from antibacterial peptides. Nanoscale 5(14):6413PubMedCrossRefGoogle Scholar
  143. 143.
    Wan Y, Liu L, Yuan S, Sun J, Li Z (2017) pH-responsive peptide supramolecular hydrogels with antibacterial activity. Langmuir 33(13):3234–3240PubMedCrossRefGoogle Scholar
  144. 144.
    Debnath S, Shome A, Das D, Das PK (2010) Hydrogelation through self-assembly of Fmoc-peptide functionalized cationic amphiphiles: potent antibacterial agent. J Phys Chem B 114(13):4407–4415PubMedCrossRefGoogle Scholar
  145. 145.
    Laverty G, McCloskey AP, Gilmore BF, Jones DS, Zhou J, Xu B (2014) Ultrashort cationic naphthalene-derived self-assembled peptides as antimicrobial nanomaterials. Biomacromolecules 15(9):3429–3439PubMedCrossRefGoogle Scholar
  146. 146.
    McCloskey AP, Draper ER, Gilmore BF, Laverty G (2017) Ultrashort self-assembling Fmoc-peptide gelators for anti-infective biomaterial applications: Fmoc-peptides demonstrate selective activity against biofilms. J Pept Sci 23(2):131–140PubMedCrossRefGoogle Scholar
  147. 147.
    Baral A, Roy S, Ghosh S, Hermida-Merino D, Hamley IW, Banerjee A (2016) A peptide-based mechano-sensitive, proteolytically stable hydrogel with remarkable antibacterial properties. Langmuir 32(7):1836–1845PubMedCrossRefGoogle Scholar
  148. 148.
    Wani NA, Singh G, Shankar S, Sharma A, Katoch M, Rai R (2017) Short hybrid peptides incorporating β- and γ-amino acids as antimicrobial agents. Peptides 97:46–53PubMedCrossRefGoogle Scholar
  149. 149.
    Malhotra K, Shankar S, Rai R, Singh Y (2018) Broad-spectrum antibacterial activity of proteolytically stable self-assembled αγ-hybrid peptide gels. Biomacromolecules 19:782–792PubMedCrossRefGoogle Scholar
  150. 150.
    Malhotra K, Shankar S, Rai R, Singh Y. Design, characterization, and evaluation of antibacterial gels, Boc-D-Phe-γ4-L-Phe-PEA/chitosan and Boc-L-Phe-γ4-L-Phe-PEA/chitosan, for biomaterial-related infections. Unpublished workGoogle Scholar
  151. 151.
    Adak A, Ghosh S, Gupta V, Ghosh S (2019) Biocompatible lipopeptide-based antibacterial hydrogel. Biomacromolecules 20(5):1889–1898PubMedCrossRefGoogle Scholar
  152. 152.
    Gahane AY, Ranjan P, Singh V et al (2018) Fmoc-phenylalanine displays antibacterial activity against Gram-positive bacteria in gel and solution phases. Soft Matter 14(12):2234–2244PubMedCrossRefGoogle Scholar
  153. 153.
    Romanò CL, Tsuchiya H, Morelli I, Battaglia AG, Drago L (2019) Antibacterial coating of implants: are we missing something? Bone Joint Res 8:199–206PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Santos M, Fonseca A, Mendonça P, Branco R, Serra A, Morais P et al (2016) Recent developments in antimicrobial polymers: a review. Materials 9:599PubMedCentralCrossRefPubMedGoogle Scholar
  155. 155.
    Huang R, Qi W, Feng L, Su R, He Z (2011) Self-assembling peptide–polysaccharide hybrid hydrogel as a potential carrier for drug delivery. Soft Matter 7:6222CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations