Battling Bacteria with Free and Surface-Immobilized Polymeric Nanostructures

  • Serena Rigo
  • Myrto Kyropoulou
  • Cora-Ann SchoenenbergerEmail author
  • Cornelia G. PalivanEmail author


With the discovery of antibiotics, bacterial infections and previously fatal diseases suddenly became curable. During the golden era of antibiotics, new classes of antibiotics were discovered. However, antibiotic-resistant bacteria rapidly evolved while fewer new antimicrobial drugs were discovered and marketed. Today, a growing number of infections are becoming harder to treat as the bacterial resistance is spreading and antibiotics become less effective. Evidently, there is an urgent demand for new strategies that efficiently battle pathogenic bacteria. Among emerging technologies, those involving polymeric nanostructures, especially polymersomes, offer many features that make them attractive candidates for battling infections. Polymersomes can be designed to be biocompatible and respond to various environmental signals. They are more robust than liposomes and can host hydrophobic and hydrophilic antimicrobial compounds, which can be released and act locally. Last but not least, they are biodegradable. Moreover, platforms comprising polymeric nanostructures can be designed as sensors for diagnosing infections. Many of these approaches require the immobilization of the antimicrobial nanostructures on a surface whereby the activity is localized to a specific region. Several recent examples of polymeric nanostructures with antimicrobial activity, both free in solution or immobilized on surfaces, are highlighted and discussed in this chapter.


Polymers Self-assembly Antimicrobial nanocompartments Catalytic nanocompartments Antimicrobial surfaces Immobilization Active surfaces 



The authors gratefully acknowledge the generous financial support from the SNSF, NCCR-MSE, and the University of Basel.


  1. 1.
    Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, Schiweck C, Kurilshikov A, Joossens M, Wijmenga C, Claes S, Van Oudenhove L, Zhernakova A, Vieira-Silva S, Raes J (2019) The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 4(4):623–632CrossRefPubMedGoogle Scholar
  2. 2.
    Hill JM, Clement C, Pogue AI, Bhattacharjee S, Zhao YH, Lukiw WJ (2014) Pathogenic microbes, the microbiome, and Alzheimer’s disease (AD). Front Aging Neurosci 6:127PubMedPubMedCentralGoogle Scholar
  3. 3.
    Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, Zeng L, Chen J, Fan S, Du X, Zhang X, Yang D, Yang Y, Meng H, Li W, Melgiri ND, Licinio J, Wei H, Xie P (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21(6):786–796CrossRefPubMedGoogle Scholar
  4. 4.
    Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front Microbiol 1:134CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rigo S, Cai C, Gunkel-Grabole G, Maurizi L, Zhang X, Xu J, Palivan CG (2018) Nanoscience-based strategies to engineer antimicrobial surfaces. Adv Sci:1700892Google Scholar
  6. 6.
    Najer A, Wu DL, Nussbaumer MG, Schwertz G, Schwab A, Witschel MC, Schafer A, Diederich F, Rottmann M, Palivan CG, Beck HP, Meier W (2016) An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery. Nanoscale 8(31):14858–14869CrossRefPubMedGoogle Scholar
  7. 7.
    Abed N, Couvreur P (2014) Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections. Int J Antimicrob Agents 43(6):485–496CrossRefPubMedGoogle Scholar
  8. 8.
    Lam SJ, Wong EHH, Boyer C, Qiao GG (2018) Antimicrobial polymeric nanoparticles. Prog Polym Sci 76:40–64CrossRefGoogle Scholar
  9. 9.
    Rodríguez-Hernández J (2017) Nano/microstructured antibacterial surfaces. In: Polymers against microorganisms: on the race to efficient antimicrobial materials. Springer International, Cham, pp 125–154CrossRefGoogle Scholar
  10. 10.
    Meng JX, Zhang PC, Wang ST (2014) Recent progress in biointerfaces with controlled bacterial adhesion by using chemical and physical methods. Chem Asian J 9(8):2004–2016CrossRefPubMedGoogle Scholar
  11. 11.
    Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot JE (2014) Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem Rev 114(21):10976–11026CrossRefGoogle Scholar
  12. 12.
    Hadjesfandiari N, Yu K, Mei Y, Kizhakkedathu JN (2014) Polymer brush-based approaches for the development of infection-resistant surfaces. J Mater Chem B 2(31):4968–4978CrossRefGoogle Scholar
  13. 13.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hessvik NP, Llorente A (2018) Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 75(2):193–208CrossRefPubMedGoogle Scholar
  15. 15.
    Cullen PJ, Steinberg F (2018) To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat Rev Mol Cell Biol 19(11):679–696CrossRefPubMedGoogle Scholar
  16. 16.
    Cabukusta B, Neefjes J (2018) Mechanisms of lysosomal positioning and movement. Traffic 19(10):761–769CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zhang XY, Tanner P, Graff A, Palivan CG, Meier W (2012) Mimicking the cell membrane with block copolymer membranes. J Polym Sci Pt A Polym Chem 50(12):2293–2318CrossRefGoogle Scholar
  18. 18.
    Traversier M, Gaslondes T, Milesi S, Michel S, Delannay E (2018) Polar lipids in cosmetics: recent trends in extraction, separation, analysis and main applications. Phytochem Rev 17(5):1179–1210CrossRefGoogle Scholar
  19. 19.
    Tran S, DeGiovanni PJ, Piel B, Rai P (2017) Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med 6Google Scholar
  20. 20.
    Abu Lila AS, Ishida T (2017) Liposomal delivery systems: design optimization and current applications. Biol Pharm Bull 40(1):1–10CrossRefPubMedGoogle Scholar
  21. 21.
    Gunkel-Grabole G, Sigg S, Lomora M, Lorcher S, Palivan CG, Meier WP (2015) Polymeric 3D nano-architectures for transport and delivery of therapeutically relevant biomacromolecules. Biomater Sci 3(1):25–40CrossRefPubMedGoogle Scholar
  22. 22.
    Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 30(4-5):267–277CrossRefPubMedGoogle Scholar
  23. 23.
    Lorcher S, Meier W (2017) Cosolvent fractionation of PMOXA-b-PDMS-b-PMOXA: bulk separation of triblocks from multiblocks. Eur Polym J 88:575–585CrossRefGoogle Scholar
  24. 24.
    Mai YY, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41(18):5969–5985CrossRefPubMedGoogle Scholar
  25. 25.
    Konishcheva EV, Daubian D, Rigo S, Meier WP (2019) Probing membrane asymmetry of ABC polymersomes. Chem Commun 55(8):1148–1151CrossRefGoogle Scholar
  26. 26.
    Konishcheva EV, Zhumaev UE, Meier WP (2017) PEO-b-PCL-b-PMOXA triblock copolymers: from synthesis to microscale polymersomes with asymmetric membrane. Macromolecules 50(4):1512–1520CrossRefGoogle Scholar
  27. 27.
    Konishcheva EV, Zhumaev UE, Kratt M, Oehri V, Meier W (2017) Complex self-assembly behavior of bis-hydrophilic PEO-b-PCL-b-PMOXA triblock copolymers in aqueous solution. Macromolecules 50(18):7155–7168CrossRefGoogle Scholar
  28. 28.
    Belluati A, Craciun I, Meyer CE, Rigo S, Palivan CG (2019) Enzymatic reactions in polymeric compartments: nanotechnology meets nature. Curr Opin Biotechnol 60:53–62CrossRefPubMedGoogle Scholar
  29. 29.
    Itel F, Chami M, Najer A, Lorcher S, Wu DL, Dinu IA, Meier W (2014) Molecular organization and dynamics in polymersome membranes: a lateral diffusion study. Macromolecules 47(21):7588–7596CrossRefGoogle Scholar
  30. 30.
    Itel F, Najer A, Palivan CG, Meier W (2015) Dynamics of membrane proteins within synthetic polymer membranes with large hydrophobic mismatch. Nano Lett 15(6):3871–3878CrossRefPubMedGoogle Scholar
  31. 31.
    Discher BM, Won YY, Ege DS, Lee JCM, Bates FS, Discher DE, Hammer DA (1999) Polymersomes: tough vesicles made from diblock copolymers. Science 284(5417):1143–1146CrossRefPubMedGoogle Scholar
  32. 32.
    Malinova V, Nallani M, Meier WP, Sinner EK (2012) Synthetic biology, inspired by synthetic chemistry. FEBS Lett 586(15):2146–2156CrossRefPubMedGoogle Scholar
  33. 33.
    Discher DE, Eisenberg A (2002) Polymer vesicles. Science 297(5583):967–973CrossRefPubMedGoogle Scholar
  34. 34.
    Penczek S, Pretula J, Lewinski P (2017) Dormant polymers and their role in living and controlled polymerizations; influence on polymer chemistry, particularly on the ring opening polymerization. Polymers (Basel) 9(12):–E646Google Scholar
  35. 35.
    Ratcliffe LPD, Bentley KJ, Wehr R, Warren NJ, Saunders BR, Armes SP (2017) Cationic disulfide-functionalized worm gels. Polym Chem 8(38):5962–5971CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Moad G (2017) RAFT polymerization to form stimuli-responsive polymers. Polym Chem 8(1):177–219CrossRefGoogle Scholar
  37. 37.
    Palmiero UC, Sponchioni M, Manfredini N, Maraldi M, Moscatelli D (2018) Strategies to combine ROP with ATRP or RAFT polymerization for the synthesis of biodegradable polymeric nanoparticles for biomedical applications. Polym Chem 9(30):4084–4099CrossRefGoogle Scholar
  38. 38.
    Dinu IA, Duskey JT, Car A, Palivan CG, Meier W (2016) Engineered non-toxic cationic nanocarriers with photo-triggered slow-release properties. Polym Chem 7(20):3451–3464CrossRefGoogle Scholar
  39. 39.
    Matyjaszewski K, Xia JH (2001) Atom transfer radical polymerization. Chem Rev 101(9):2921–2990CrossRefPubMedGoogle Scholar
  40. 40.
    Fantin M, Lorandi F, Gennaro A, Isse AA, Matyjaszewski K (2017) Electron transfer reactions in atom transfer radical polymerization. Synthesis 49(15):3311–3322CrossRefGoogle Scholar
  41. 41.
    Gaitzsch J, Welsch PC, Folini J, Schoenenberger CA, Anderson JC, Meier WP (2018) Revisiting monomer synthesis and radical ring opening polymerization of dimethylated MDO towards biodegradable nanoparticles for enzymes. Eur Polym J 101:113–119CrossRefGoogle Scholar
  42. 42.
    Konishcheva E, Daubian D, Gaitzsch J, Meier W (2018) Synthesis of linear ABC triblock copolymers and their self-assembly in solution. Helv Chim Acta 101(2):e1700287CrossRefGoogle Scholar
  43. 43.
    Bai LC, Tan L, Chen LJ, Liu ST, Wang YM (2014) Preparation and characterizations of poly(2-methyl-2-oxazoline) based antifouling coating by thermally induced immobilization. J Mater Chem B 2(44):7785–7794CrossRefGoogle Scholar
  44. 44.
    Zhang XY, Zhang PY (2017) Polymersomes in nanomedicine—a review. Curr Nanosci 13(2):124–129CrossRefGoogle Scholar
  45. 45.
    Konradi R, Pidhatika B, Muhlebach A, Textor M (2008) Poly-2-methyl-2-oxazoline: a peptide-like polymer for protein-repellent surfaces. Langmuir 24(3):613–616CrossRefPubMedGoogle Scholar
  46. 46.
    Atkins PW, de Paula J (2007) Physikalische Chemie. Oxford University Press, OxfordGoogle Scholar
  47. 47.
    Aoshima S, Kanaoka SA (2009) Renaissance in living cationic polymerization. Chem Rev 109(11):5245–5287CrossRefPubMedGoogle Scholar
  48. 48.
    Najer A, Wu DL, Vasquez D, Palivan CG, Meier W (2013) Polymer nanocompartments in broad-spectrum medical applications. Nanomedicine 8(3):425–447CrossRefPubMedGoogle Scholar
  49. 49.
    Lanzilotto A, Kyropoulou M, Constable EC, Housecroft CE, Meier WP, Palivan CG (2018) Porphyrin-polymer nanocompartments: singlet oxygen generation and antimicrobial activity. J Biol Inorg Chem 23(1):109–122CrossRefPubMedGoogle Scholar
  50. 50.
    Palivan CG, Goers R, Najer A, Zhang XY, Car A, Meier W (2016) Bioinspired polymer vesicles and membranes for biological and medical applications. Chem Soc Rev 45(2):377–411CrossRefPubMedGoogle Scholar
  51. 51.
    Onaca O, Enea R, Hughes DW, Meier W (2009) Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery. Macromol Biosci 9(2):129–139CrossRefPubMedGoogle Scholar
  52. 52.
    Nardin C, Widmer J, Winterhalter M, Meier W (2001) Amphiphilic block copolymer nanocontainers as bioreactors. Eur Phys J E 4(4):403–410CrossRefGoogle Scholar
  53. 53.
    Broz P, Benito SM, Saw C, Burger P, Heider H, Pfisterer M, Marsch S, Meier W, Hunziker P (2005) Cell targeting by a generic receptor-targeted polymer nanocontainer platform. J Control Release 102(2):475–488CrossRefPubMedGoogle Scholar
  54. 54.
    Zhang C, Zhu YQ, Zhou CC, Yuan WZ, Du JZ (2013) Antibacterial vesicles by direct dissolution of a block copolymer in water. Polym Chem 4(2):255–259CrossRefGoogle Scholar
  55. 55.
    Wang MZ, Zhou CC, Chen J, Xiao YF, Du JZ (2015) Multifunctional biocompatible and biodegradable folic acid conjugated poly(epsilon-caprolactone)-polypeptide copolymer vesicles with excellent antibacterial activities. Bioconjug Chem 26(4):725–734CrossRefPubMedGoogle Scholar
  56. 56.
    Belluati A, Craciun I, Liu J, Palivan CG (2018) Nanoscale enzymatic compartments in tandem support cascade reactions in vitro. Biomacromolecules 19(10):4023–4033CrossRefPubMedGoogle Scholar
  57. 57.
    Langowska K, Palivan CG, Meier W (2013) Polymer nanoreactors shown to produce and release antibiotics locally. Chem Commun 49(2):128–130CrossRefGoogle Scholar
  58. 58.
    Wick WE (1967) Cephalexin a new orally absorbed cephalosporin antibiotic. Appl Microbiol 15(4):765–769CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Spratt BG (1975) Distinct penicillin binding-proteins involved in division, elongation, and shape of Escherichia coli-K12. Proc Natl Acad Sci U S A 72(8):2999–3003CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Wayakanon K, Thornhill MH, Douglas CWI, Lewis AL, Warren NJ, Pinnock A, Armes SP, Battaglia G, Murdoch C (2013) Polymersome-mediated intracellular delivery of antibiotics to treat Porphyromonas gingivalis-infected oral epithelial cells. FASEB J 27(11):4455–4465CrossRefPubMedGoogle Scholar
  61. 61.
    Rizzello L, Robertson JD, Elks PM, Poma A, Daneshpour N, Prajsnar TK, Evangelopoulos D, Ortiz Canseco J, Yona S, Marriott HM, Dockrell DH, Foster S, De Geest B, De Koker S, McHugh T, Renshaw SA, Battaglia G (2017) Targeting mononuclear phagocytes for eradicating intracellular parasites. bioRxiv. p 119297Google Scholar
  62. 62.
    Lane DD, Su FY, Chiu DY, Srinivasan S, Wilson JT, Ratner DM, Stayton PS, Convertine AJ (2015) Dynamic intracellular delivery of antibiotics via pH-responsive polymersomes. Polym Chem 6(8):1255–1266CrossRefPubMedGoogle Scholar
  63. 63.
    Hong YX, Xi YJ, Zhang JX, Wang DD, Zhang HL, Yan N, He SS, Du JZ (2018) Polymersome-hydrogel composites with combined quick and long-term antibacterial activities. J Mater Chem B 6(39):6311–6321CrossRefGoogle Scholar
  64. 64.
    Kurtjak M, Aničić N, Vukomanovicć M (2017) Inorganic nanoparticles: innovative tools for antimicrobial agents in antibacterial agents. IntechOpen, Rijeka, pp 39–60Google Scholar
  65. 65.
    Lu H, Fan L, Liu QM, Wei JR, Ren TB, Du JZ (2012) Preparation of water-dispersible silver-decorated polymer vesicles and micelles with excellent antibacterial efficacy. Polym Chem 3(8):2217–2227CrossRefGoogle Scholar
  66. 66.
    Geilich BM, van de Ven AL, Singleton GL, Sepulveda LJ, Sridhar S, Webster TJ (2015) Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections. Nanoscale 7(8):3511–3519CrossRefPubMedGoogle Scholar
  67. 67.
    Geilich BM, Gelfat I, Sridhar S, van de Ven AL, Webster TJ (2017) Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication. Biomaterials 119:78–85CrossRefPubMedGoogle Scholar
  68. 68.
    Haas S, Hain N, Raoufi M, Handschuh-Wang S, Wang T, Jiang X, Schonherr H (2015) Enzyme degradable polymersomes from hyaluronic acid-block-poly(epsilon-caprolactone) copolymers for the detection of enzymes of pathogenic bacteria. Biomacromolecules 16(3):832–841CrossRefPubMedGoogle Scholar
  69. 69.
    Grzelakowski M, Onaca O, Rigler P, Kumar M, Meier W (2009) Immobilized protein-polymer nanoreactors. Small 5(22):2545–2548CrossRefPubMedGoogle Scholar
  70. 70.
    Berthaud A, Quemeneur F, Deforet M, Bassereau P, Brochard-Wyart F, Mangenot S (2016) Spreading of porous vesicles subjected to osmotic shocks: the role of aquaporins. Soft Matter 12(5):1601–1609CrossRefPubMedGoogle Scholar
  71. 71.
    De Vries WC, Tesch M, Studer A, Ravoo BJ (2017) Molecular recognition and immobilization of ligand-conjugated redox-responsive polymer nanocontainers. ACS Appl Mater Interfaces 9(48):41760–41766CrossRefPubMedGoogle Scholar
  72. 72.
    Battaglia G, LoPresti C, Massignani M, Warren NJ, Madsen J, Forster S, Vasilev C, Hobbs JK, Armes SP, Chirasatitsin S, Engler AJ (2011) Wet nanoscale imaging and testing of polymersomes. Small 7(14):2010–2015CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Iyisan B, Janke A, Reichenbach P, Eng LM, Appelhans D, Voit B (2016) Immobilized multifunctional polymersomes on solid surfaces: infrared light-induced selective photochemical reactions, PH responsive behavior, and probing mechanical properties under liquid phase. ACS Appl Mater Interface 8(24):15788–15801CrossRefGoogle Scholar
  74. 74.
    Li F, Ketelaar T, Stuart MAC, Sudholter EJR, Leermakers FAM, Marcelis ATM (2008) Gentle immobilization of nonionic polymersomes on solid substrates. Langmuir 24(1):76–82CrossRefPubMedGoogle Scholar
  75. 75.
    Chen Q, de Groot GW, Schonherr H, Vancso GJ (2011) Patterns of surface immobilized block copolymer vesicle nanoreactors. Eur Polym J 47(2):130–138CrossRefGoogle Scholar
  76. 76.
    Choi JM, Yoon B, Choi K, Seol ML, Kim JM, Choi YK (2012) Micropatterning polydiacetylene supramolecular vesicles on glass substrates using a pre-patterned hydrophobic thin film. Macromol Chem Phys 213(6):610–616CrossRefGoogle Scholar
  77. 77.
    Domes S, Filiz V, Nitsche J, Fromsdorf A, Forster S (2010) Covalent attachment of polymersomes to surfaces. Langmuir 26(10):6927–6931CrossRefPubMedGoogle Scholar
  78. 78.
    Langowska K, Kowal J, Palivan CG, Meier W (2014) A general strategy for creating self-defending surfaces for controlled drug production for long periods of time. J Mater Chem B 2(29):4684–4693CrossRefGoogle Scholar
  79. 79.
    Gunkel-Grabole G, Palivan C, Meier W (2017) Nanostructured surfaces through immobilization of self-assembled polymer architectures using thiol-ene chemistry. Macromol Mater Eng 302(4)Google Scholar
  80. 80.
    Rein C, Nissen S, Grzelakowski M, Meldal M (2016) Click-chemistry of polymersomes on nanoporous polymeric surfaces. J Polym Sci Pt A Polym Chem 54(13):2032–2039CrossRefGoogle Scholar
  81. 81.
    Lutz JF (2008) Copper-free azide-alkyne cycloadditions: new insights and perspectives. Angew Chem Int Ed 47(12):2182–2184CrossRefGoogle Scholar
  82. 82.
    Agard NJ, Prescher JA, Bertozzi CR (2005) A strain-promoted [3+2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems (vol 126, pg 15046, 2004). J Am Chem Soc 127(31):11196–11196CrossRefGoogle Scholar
  83. 83.
    Rigo S, Gunkel-Grabole G, Meier W, Palivan CG (2019) Surfaces with dual functionality through specific coimmobilization of self-assembled polymeric nanostructures. Langmuir 35(13):4557–4565CrossRefPubMedGoogle Scholar
  84. 84.
    Mahajan N, Lu RB, Wu ST, Fang JY (2005) Patterning polymerized lipid vesicles with soft lithography. Langmuir 21(7):3132–3135CrossRefPubMedGoogle Scholar
  85. 85.
    Qin D, Xia YN, Whitesides GM (2010) Soft lithography for micro- and nanoscale patterning. Nat Protoc 5(3):491–502CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Xin ZQ, Liu Y, Li X, Liu SL, Fang Y, Deng YQ, Bao C, Li LH (2017) Conductive grid patterns prepared by microcontact printing silver nanoparticles ink. Mater Res Express 4(1)Google Scholar
  87. 87.
    Craciun I, Denes AS, Gunkel-Grabole G, Belluati A, Palivan CG (2018) Surfaces decorated with polymeric nanocompartments for pH reporting. Helv Chim Acta 101(3)Google Scholar
  88. 88.
    Zhang XY, Lomora M, Einfalt T, Meier W, Klein N, Schneider D, Palivan CG (2016) Active surfaces engineered by immobilizing protein-polymer nanoreactors for selectively detecting sugar alcohols. Biomaterials 89:79–88CrossRefPubMedGoogle Scholar
  89. 89.
    Fang B, Jiang Y, Nusslein K, Rotello VM, Santore MM (2015) Antimicrobial surfaces containing cationic nanoparticles: how immobilized, clustered, and protruding cationic charge presentation affects killing activity and kinetics. Colloids Surf B Biointerfaces 125:255–263CrossRefPubMedGoogle Scholar
  90. 90.
    Taheri S, Baier G, Majewski P, Barton M, Forch R, Landfester K, Vasilev K (2014) Synthesis and surface immobilization of antibacterial hybrid silver-poly(l-lactide) nanoparticles. Nanotechnology 25(30)Google Scholar
  91. 91.
    Ali SM, Siddiqui R, Khan NA (2018) Antimicrobial discovery from natural and unusual sources. J Pharm Pharmacol 70(10):1287–1300CrossRefPubMedGoogle Scholar
  92. 92.
    Fry DE (2018) Antimicrobial peptides. Surg Infect (Larchmt) 19(8):804–811CrossRefGoogle Scholar
  93. 93.
    Riool M, de Breij A, Drijfhout JW, Nibbering PH, Zaat SAJ (2017) Antimicrobial peptides in biomedical device manufacturing. Front Chem 5:63CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Riool M, de Breij A, de Boer L, Kwakman PHS, Cordfunke RA, Cohen O, Malanovic N, Emanuel N, Lohner K, Drijfhout JW, Nibbering PH, Zaat SAJ (2017) Controlled release of LL-37-derived synthetic antimicrobial and anti-biofilm peptides SAAP-145 and SAAP-276 prevents experimental biomaterial-associated Staphylococcus aureus infection. Adv Funct Mater 27(20):1606623CrossRefGoogle Scholar
  95. 95.
    Ribeiro KL, Frias IAM, Franco OL, Dias SC, Sousa-Junior AA, Silva ON, Bakuzis AF, Oliveira MDL, Andrade CAS (2018) Clavanin A-bioconjugated Fe3O4/Silane core-shell nanoparticles for thermal ablation of bacterial biofilms. Colloids Surf B Biointerfaces 169:72–81CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of BaselBaselSwitzerland

Personalised recommendations