Advertisement

Metal- and Polymer-Based Nanoparticles for Advanced Therapeutic and Diagnostic System Applications

  • Nicole J. Bassous
  • Thomas J. WebsterEmail author
Chapter
  • 86 Downloads

Abstract

Solutions for distinct clinical conditions that arise due to the application of nanotechnology, pertaining to refined diagnostics and therapeutics, are steadily revolutionizing the medical field. Presently, distinct modalities have emerged which advocate the manipulation of nanomaterials to produce medical devices. While several of these constructs are actively being used in the clinic, a greater number are being audited for clinical safety and efficacy, and many more are under various stages of development. Nanomaterials that are frequently investigated and that have been approved for clinical use include capsules, dendrimers, polymeric nanoparticles, nanocages, nanoshells, biopolymer nanocarriers, fullerenes, carbon nanotubes, and various inorganic materials. Due to the vibrancy of the nanomedical field, novel solutions are continuously being developed and adapted to meet standard patient needs and to exceed the capabilities of antiquated hospital diagnostic and treatment systems. In this review, the integration of biomaterials and nanotechnology, to yield nanomaterial building blocks, is investigated, especially with pertinence to the fabrication of contemporary medical devices that can be used to treat or diagnose a broad range of bacterial infections. Although nanotechnology has been credited with advancing numerous clinical breakthroughs, substantial efforts must be directed toward extensive cytotoxicity, biodegradation, administration, distribution, and metabolic analyses, among other performance identifiers, prior to the adoption of nanoparticles and/or nanomaterials as dependable drug substitutes, carriers, implants, or sensor elements.

Keywords

Nanotechnology Biomaterials Metal nanoparticles Mechanisms of action Antimicrobial Drug delivery vehicles Polymers Advanced imaging systems Surface-enhanced Raman spectroscopy (SERS) 

References

  1. 1.
    Sethuraman S, Krishnan UM, Subramanian A (2016) Biomaterials and nanotechnology for tissue engineering. CRC Press, Boca Raton. ISBN: 9781498743747CrossRefGoogle Scholar
  2. 2.
    Azam A, Arshad M, Dwivedi S, Ashraf MT (2017) Antibacterial applications of nanomaterials. Adv Struct Mater 83:143–158CrossRefGoogle Scholar
  3. 3.
    Bardosova M, Wagner T (2015) Nanomaterials and nanoarchitectures: a complex review of current hot topics and their applications. In: Nanomaterials and Nanoarchitectures: a complex review of current hot topics and their applications. Springer, Dordrecht, Netherlands, pp 1–343. ISBN: 9789401799218CrossRefGoogle Scholar
  4. 4.
    Williams D (2008) The relationship between biomaterials and nanotechnology. Biomaterials 29:1737–1738.  https://doi.org/10.1016/j.biomaterials.2008.01.003CrossRefPubMedGoogle Scholar
  5. 5.
    Kim J, Mohamed MAA, Zagorovsky K, Chan WCW (2017) State of diagnosing infectious pathogens using colloidal nanomaterials. Biomaterials 146:97–114CrossRefGoogle Scholar
  6. 6.
    Caldorera-Moore M, Peppas NA (2009) Micro- and nanotechnologies for intelligent and responsive biomaterial-based medical systems. Adv Drug Deliv Rev 61:1391–1401CrossRefGoogle Scholar
  7. 7.
    Saito Y, Luo X, Zhao C, Pan W, Chen C, Gong J, Matsumoto H, Yao J, Wu H (2015) Filling the gaps between graphene oxide: a general strategy toward nanolayered oxides. Adv Funct Mater 25:5683–5690.  https://doi.org/10.1002/adfm.201501358CrossRefGoogle Scholar
  8. 8.
    Richards DA, Maruani A, Chudasama V (2017) Antibody fragments as nanoparticle targeting ligands: a step in the right direction. Chem Sci 8:63–77.  https://doi.org/10.1039/C6SC02403CCrossRefPubMedGoogle Scholar
  9. 9.
    Sajanlal PR, Sreeprasad TS, Samal AK, Pradeep T (2011) Anisotropic nanomaterials: structure, growth, assembly, and functions. Nano Rev 2:5883.  https://doi.org/10.3402/nano.v2i0.5883CrossRefGoogle Scholar
  10. 10.
    Barreto ML, Teixeira MG, Carmo EH (2006) Infectious diseases epidemiology. J Epidemiol Community Health 60:192–195CrossRefGoogle Scholar
  11. 11.
    Woolhouse MEJ, Gowtage-Sequeria S (2005) Host range and emerging and reemerging pathogens. Emerg Infect Dis 11:1842–1847.  https://doi.org/10.3201/eid1112.050997CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Andersson DI (2003) Persistence of antibiotic resistant bacteria. Curr Opin Microbiol 6:452–456CrossRefGoogle Scholar
  13. 13.
    Maduraiveeran G, Sasidharan M, Ganesan V (2018) Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 103:113–129CrossRefGoogle Scholar
  14. 14.
    Dhall A, Self W (2018) Cerium oxide nanoparticles: a brief review of their synthesis methods and biomedical applications. Antioxidants 7:97.  https://doi.org/10.3390/antiox7080097CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Grigore ME, Biscu ER, Holban AM, Gestal MC, Grumezescu AM (2016) Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals 9(4):75.  https://doi.org/10.3390/ph9040075CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Elahi N, Kamali M, Baghersad MH (2018) Recent biomedical applications of gold nanoparticles: a review. Talanta 184:537–556CrossRefGoogle Scholar
  17. 17.
    Ali A, Zafar H, Zia M, ul Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67CrossRefGoogle Scholar
  18. 18.
    Leso V, Iavicoli I (2018) Palladium nanoparticles: toxicological effects and potential implications for occupational risk assessment. Int J Mol Sci 19(2)Google Scholar
  19. 19.
    Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa PP (2017) Platinum nanoparticles in nanobiomedicine. Chem Soc Rev 46:4951–4975CrossRefGoogle Scholar
  20. 20.
    Caro C, Castillo P, Klippstein R, Pozo D, Zaderenko AP (2010) Silver nanoparticles: sensing and imaging applications. Silver Nanoparticles, pp 201–225. ISBN: 978-953-307-028-5Google Scholar
  21. 21.
    Zhang Y, Nayak T, Hong H, Cai W (2013) Biomedical applications of zinc oxide nanomaterials. Curr Mol Med 13:1633–1645.  https://doi.org/10.2174/1566524013666131111130058CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:65CrossRefGoogle Scholar
  23. 23.
    Karakoti AS, Hench LL, Seal S (2006) The potential toxicity of nanomaterials—the role of surfaces. JOM 58:77–82CrossRefGoogle Scholar
  24. 24.
    Leung YH, Ng AMC, Xu X, Shen Z, Gethings LA, Wong MT, Chan CMN, Guo MY, Ng YH, Djurišic̈ AB, Lee PKH, Chan WK, Yu LH, Phillips DL, Ma APY, Leung FCC (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10:1171–1183.  https://doi.org/10.1002/smll.201302434CrossRefPubMedGoogle Scholar
  25. 25.
    Pan X, Wang Y, Chen Z, Pan D, Cheng Y, Liu Z, Lin Z, Guan X (2013) Investigation of antibacterial activity and related mechanism of a series of nano-Mg(OH)2. ACS Appl Mater Interfaces 5:1137–1142.  https://doi.org/10.1021/am302910qCrossRefPubMedGoogle Scholar
  26. 26.
    Simon-Deckers A, Loo S, Mayne-L’Hermite M, Herlin-Boime N, Menguy N, Reynaud C, Gouget B, Carriere M (2009) Size-, composition- and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ Sci Technol 43:8423–8429.  https://doi.org/10.1021/es9016975CrossRefGoogle Scholar
  27. 27.
    Ivask A, Elbadawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, Chang CH, Liu R, Tolaymat T, Telesca D, Zink JI, Cohen Y, Holden PA, Godwin HA (2014) Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 8:374–386.  https://doi.org/10.1021/nn4044047CrossRefPubMedGoogle Scholar
  28. 28.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353.  https://doi.org/10.1088/0957-4484/16/10/059CrossRefPubMedGoogle Scholar
  29. 29.
    Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101.  https://doi.org/10.1016/j.nano.2006.12.001CrossRefGoogle Scholar
  30. 30.
    Soltani Nezhad S, Rabbani Khorasgani M, Emtiazi G, Yaghoobi MM, Shakeri S (2014) Isolation of copper oxide (CuO) nanoparticles resistant Pseudomonas strains from soil and investigation on possible mechanism for resistance. World J Microbiol Biotechnol 30:809–817.  https://doi.org/10.1007/s11274-013-1481-3CrossRefPubMedGoogle Scholar
  31. 31.
    Pal S, Tak YK, Song JM (2015) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. J Biol Chem 290:1712–1720.  https://doi.org/10.1128/AEM.02218-06.CrossRefGoogle Scholar
  32. 32.
    McQuillan JS, Shaw AM (2014) Differential gene regulation in the Ag nanoparticle and Ag(+)-induced silver stress response in Escherichia coli: a full transcriptomic profile. Nanotoxicology 5390:1–8.  https://doi.org/10.3109/17435390.2013.870243.CrossRefGoogle Scholar
  33. 33.
    McQuillan JS, Infante HG, Stokes E, Shaw AM (2012) Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 6:857–866CrossRefGoogle Scholar
  34. 34.
    Lok C-N, Ho C-M, Chen R, He Q-Y, Yu W-Y, Sun H, Tam PK-H, Chiu J-F, Che C-M (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534.  https://doi.org/10.1007/s00775-007-0208-zCrossRefPubMedGoogle Scholar
  35. 35.
    El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287.  https://doi.org/10.1021/es1034188CrossRefPubMedGoogle Scholar
  36. 36.
    Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797S–811SPubMedGoogle Scholar
  37. 37.
    Berthon G (2009) Critical evaluation of the stability constants of metal complexes of amino acids with polar side chains. Pure Appl Chem 67:1117–1240CrossRefGoogle Scholar
  38. 38.
    Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178.  https://doi.org/10.1128/AEM.02001-07CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668.  https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3CrossRefGoogle Scholar
  40. 40.
    Tamayo LA, Zapata PA, Vejar ND, Azócar MI, Gulppi MA, Zhou X, Thompson GE, Rabagliati FM, Páez MA (2014) Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater Sci Eng C 40:24–31.  https://doi.org/10.1016/j.msec.2014.03.037CrossRefGoogle Scholar
  41. 41.
    Ramalingam B, Parandhaman T, Das SK (2016) Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of Gram-negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Appl Mater Interfaces 8:4963–4976.  https://doi.org/10.1021/acsami.6b00161CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686.  https://doi.org/10.1021/la0202374CrossRefGoogle Scholar
  43. 43.
    Sohm B, Immel F, Bauda P, Pagnout C (2015) Insight into the primary mode of action of TiO2 nanoparticles on Escherichia coli in the dark. Proteomics 15:98–113.  https://doi.org/10.1002/pmic.201400101CrossRefPubMedGoogle Scholar
  44. 44.
    Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013(1):942916PubMedPubMedCentralGoogle Scholar
  45. 45.
    Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9:035004.  https://doi.org/10.1088/1468-6996/9/3/035004CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Madl AK, Plummer LE, Carosino C, Pinkerton KE (2014) Nanoparticles, lung injury, and the role of oxidant stress. Annu Rev Physiol 76:447–465.  https://doi.org/10.1146/annurev-physiol-030212-183735CrossRefPubMedGoogle Scholar
  47. 47.
    Mukha IP, Eremenko AM, Smirnova NP, Mikhienkova AI, Korchak GI, Gorchev VF, Chunikhin AY (2013) Antimicrobial activity of stable silver nanoparticles of a certain size. Appl Biochem Microbiol 49:199–206.  https://doi.org/10.1134/S0003683813020117CrossRefGoogle Scholar
  48. 48.
    Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588.  https://doi.org/10.1021/es703238hCrossRefPubMedGoogle Scholar
  49. 49.
    Wang L, He H, Yu Y, Sun L, Liu S, Zhang C, He L (2014) Morphology-dependent bactericidal activities of Ag/CeO2 catalysts against Escherichia coli. J Inorg Biochem 135:45–53.  https://doi.org/10.1016/j.jinorgbio.2014.02.016CrossRefPubMedGoogle Scholar
  50. 50.
    Xiu Z-M, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008.  https://doi.org/10.1021/es201918fCrossRefPubMedGoogle Scholar
  51. 51.
    Kodas TT (1989) Generation of complex metal oxides by aerosol processes: superconducting ceramic particles and films. Adv Mater 1:180–192CrossRefGoogle Scholar
  52. 52.
    Ulrich GD, Rieh JW (1982) Aggregation and growth of submicron oxide particles in flames. J Colloid Interface Sci 87:257–265.  https://doi.org/10.1016/0021-9797(82)90387-3CrossRefGoogle Scholar
  53. 53.
    Skandan G, Chen YJ, Glumac N, Kear BH (1999) Synthesis of oxide nanoparticles in low pressure flames. Nanostruct Mater 11:149–158.  https://doi.org/10.1016/S0965-9773(99)00028-8CrossRefGoogle Scholar
  54. 54.
    Granqvist CG, Buhrman RA (1976) Log-normal size distributions of ultrafine metal particles. Solid State Commun 18:123–126.  https://doi.org/10.1016/0038-1098(76)91415-0CrossRefGoogle Scholar
  55. 55.
    Vorkapic D, Matsoukas T (1998) Effect of temperature and alcohols in the preparation of titania nanoparticles from alkoxides. J Am Ceram Soc 81:2815–2820.  https://doi.org/10.1111/j.1151-2916.1998.tb02701.x.CrossRefGoogle Scholar
  56. 56.
    Park HK, Kim DK, Kim CH (1997) Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4. J Am Ceram Soc 80:743–749.  https://doi.org/10.1111/j.1151-2916.1997.tb02891.xCrossRefGoogle Scholar
  57. 57.
    Smiya S (2003) Hydrothermal processing in ceramics. In: Handbook of advanced ceramics: materials, applications, processing and properties, vol 1–2, pp 471–513. ISBN: 9780080532943CrossRefGoogle Scholar
  58. 58.
    Chang EL, Simmers C, Knight DA (2010) Cobalt complexes as antiviral and antibacterial agents. Pharmaceuticals 3:1711–1728CrossRefGoogle Scholar
  59. 59.
    Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1996) Detection of active oxygen generated from ceramic powders having antibacterial activity. J Chem Eng Jpn 29:627–633.  https://doi.org/10.1252/jcej.29.627CrossRefGoogle Scholar
  60. 60.
    Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Takehara A, Sawaki T, Kokugan T, Shimizu M (1997) Escherichia coli damage by ceramic powder slurries. J Chem Eng Jpn 30:1034–1039.  https://doi.org/10.1252/jcej.30.1034CrossRefGoogle Scholar
  61. 61.
    Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng 86:521–522.  https://doi.org/10.1016/S0922-338X(98)80165-7CrossRefGoogle Scholar
  62. 62.
    Applerot G, Lipovsky A, Dror R, Perkas N, Nitzan Y, Lubart R, Gedanken A (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv Funct Mater 19:842–852.  https://doi.org/10.1002/adfm.200801081CrossRefGoogle Scholar
  63. 63.
    Cavassin ED, de Figueiredo LFP, Otoch JP, Seckler MM, de Oliveira RA, Franco FF, Marangoni VS, Zucolotto V, Levin ASS, Costa SF (2015) Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotechnol 13:64.  https://doi.org/10.1186/s12951-015-0120-6CrossRefGoogle Scholar
  64. 64.
    Dorobantu LS, Fallone C, Noble AJ, Veinot J, Ma G, Goss GG, Burrell RE (2015) Toxicity of silver nanoparticles against bacteria, yeast, and algae. J Nanopart Res 17:172.  https://doi.org/10.1007/s11051-015-2984-7CrossRefGoogle Scholar
  65. 65.
    Aazam ES, Zaheer Z (2016) Growth of Ag-nanoparticles in an aqueous solution and their antimicrobial activities against Gram positive, Gram negative bacterial strains and Candida fungus. Bioprocess Biosyst Eng 39:575–584.  https://doi.org/10.1007/s00449-016-1539-3CrossRefPubMedGoogle Scholar
  66. 66.
    Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E (1998) Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 24:1113–1128.  https://doi.org/10.3109/03639049809108571CrossRefPubMedGoogle Scholar
  67. 67.
    Simon-Gracia L, Hunt H, Scodeller PD, Gaitzsch J, Braun GB, Willmore a-M a, Ruoslahti E, Battaglia G, Teesalu T (2016) Paclitaxel-loaded polymersomes for enhanced intraperitoneal chemotherapy. Mol Cancer Ther 15:670–680.  https://doi.org/10.1158/1535-7163.MCT-15-0713-TCrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Shuai X, Merdan T, Schaper AK, Xi F, Kissel T (2004) Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjug Chem 15:441–448.  https://doi.org/10.1021/bc034113uCrossRefPubMedGoogle Scholar
  69. 69.
    Xie J, Wang CH (2005) Self-assembled biodegradable nanoparticles developed by direct dialysis for the delivery of paclitaxel. Pharm Res 22:2079–2090.  https://doi.org/10.1007/s11095-005-7782-yCrossRefPubMedGoogle Scholar
  70. 70.
    Kim SY, Lee YM (2001) Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(ε-caprolactone) as novel anticancer drug carriers. Biomaterials 22:1697–1704.  https://doi.org/10.1016/S0142-9612(00)00292-1CrossRefPubMedGoogle Scholar
  71. 71.
    Zhang X, Jackson JK, Burt HM (1996) Development of amphiphilic diblock copolymers as micellar carriers of taxol. Int J Pharm 132:195–206.  https://doi.org/10.1016/0378-5173(95)04386-1CrossRefGoogle Scholar
  72. 72.
    Ishida O, Maruyama K, Sasaki K, Iwatsuru M (1999) Size-dependent extravasation and interstitial localization of polyethyleneglycol liposomes in solid tumor-bearing mice. Int J Pharm 190:49–56.  https://doi.org/10.1016/S0378-5173(99)00256-2CrossRefPubMedGoogle Scholar
  73. 73.
    Jones MC, Leroux JC (1999) Polymeric micelles—a new generation of colloidal drug carriers. Eur J Pharm Biopharm 48:101–111CrossRefGoogle Scholar
  74. 74.
    Gagliardini E, Conti S, Benigni A, Remuzzi G, Remuzzi A (2010) Imaging of the porous ultrastructure of the glomerular epithelial filtration slit. J Am Soc Nephrol 21:2081–2089.  https://doi.org/10.1681/ASN.2010020199CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Yokoyama M, Kwon GS, Okano T, Sakurai Y, Kataoka K (1994) Development of micelle-forming polymeric drug with superior anticancer activity. In: Polymeric drugs and drug administration, vol 545, pp 126–134. ISBN: 0097-6156r0-8412-2744-6CrossRefGoogle Scholar
  76. 76.
    Hao Y-L, Deng Y-J, Chen Y, Wang K-Z, Hao A-J, Zhang Y (2005) In-vitro cytotoxicity, in-vivo biodistribution and anti-tumour effect of PEGylated liposomal topotecan. J Pharm Pharmacol 57:1279–1287.  https://doi.org/10.1211/jpp.57.10.0006CrossRefPubMedGoogle Scholar
  77. 77.
    Fujioka K (1998) Protein release from collagen matrices. Adv Drug Deliv Rev 31:247–266.  https://doi.org/10.1016/S0169-409X(97)00119-1CrossRefPubMedGoogle Scholar
  78. 78.
    Tabata Y, Ikada Y (1998) Protein release from gelatin matrices. Adv Drug Deliv Rev 31:287–301.  https://doi.org/10.1016/S0169-409X(97)00125-7.CrossRefPubMedGoogle Scholar
  79. 79.
    Dumitriu S, Chornet E (1998) Inclusion and release of proteins from polysaccharide-based polyion complexes. Adv Drug Deliv Rev 31:223–246.  https://doi.org/10.1016/S0169-409X(97)00120-8.CrossRefPubMedGoogle Scholar
  80. 80.
    Lambert G, Fattal E, Couvreur P (2001) Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv Drug Deliv Rev 47:99–112CrossRefGoogle Scholar
  81. 81.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20CrossRefGoogle Scholar
  82. 82.
    Brinkhuis RPRP, Rutjes FPJT, van Hest JCM (2011) Polymeric vesicles in biomedical applications. Polym Chem 2:1449.  https://doi.org/10.1039/c1py00061fCrossRefGoogle Scholar
  83. 83.
    Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603.  https://doi.org/10.1126/science.8128245CrossRefPubMedGoogle Scholar
  84. 84.
    Ishida T, Kiwada H (2008) Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int J Pharm 354:56–62CrossRefGoogle Scholar
  85. 85.
    Rideau E, Dimova R, Schwille P, Wurm FR, Landfester K (2018) Liposomes and polymersomes: a comparative review towards cell mimicking. Chem Soc Rev 47:8572–8610.  https://doi.org/10.1039/c8cs00162fCrossRefPubMedGoogle Scholar
  86. 86.
    Jia L, Zheng JJ, Jiang SM, Huang KH (2010) Preparation, physicochemical characterization and cytotoxicity in vitro of gemcitabine-loaded PEG-PDLLA nanovesicles. World J Gastroenterol 16:1008–1013.  https://doi.org/10.3748/wjg.v16.i8.1008CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Liu J, Huang Y, Kumar A, Tan A, Jin S, Mozhi A, Liang XJ (2014) PH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 32:693–710CrossRefGoogle Scholar
  88. 88.
    Zastre JA, Jackson JK, Wong W, Burt HM (2008) P-glycoprotein efflux inhibition by amphiphilic diblock copolymers: relationship between copolymer concentration and substrate hydrophobicity. Mol Pharm 5:643–653CrossRefGoogle Scholar
  89. 89.
    Bruni S, Chang TM (1989) Hepatocytes immobilised by microencapsulation in artificial cells: effects on hyperbilirubinemia in Gunn rats. Biomater Artif Cells Artif Organs 17:403–411.  https://doi.org/10.3109/10731198909118855CrossRefPubMedGoogle Scholar
  90. 90.
    Chang TMS (1972) Artificial cells. Charles C. Thomas, SpringfieldGoogle Scholar
  91. 91.
    Lopes de Menezes DE, Pilarski LM, Allen TM (1998) In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma. Cancer Res 58:3320–3330PubMedGoogle Scholar
  92. 92.
    Trubetskoy VS (1999) Polymeric micelles as carriers of diagnostic agents. Adv Drug Deliv Rev 37:81–88CrossRefGoogle Scholar
  93. 93.
    Delgado A, Soriano I, Sánchez E, Oliva M, Évora C (2000) Radiolabelled biodegradable microspheres for lung imaging. Eur J Pharm Biopharm 50:227–236.  https://doi.org/10.1016/S0939-6411(00)00109-0.CrossRefPubMedGoogle Scholar
  94. 94.
    Spulber M, Baumann P, Liu J, Palivan CG (2015) Ceria loaded nanoreactors: a nontoxic superantioxidant system with high stability and efficacy. Nanoscale 7:1411–1423.  https://doi.org/10.1039/C4NR02748ECrossRefPubMedGoogle Scholar
  95. 95.
    Geilich BM, Singleton GL, Van De Ven AL, Sridhar S, Webster TJ (2014) Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections. In: Proceedings of the IEEE annual northeast bioengineering conference, NEBEC, vol 2014-DecemGoogle Scholar
  96. 96.
    Geilich BM, Gelfat I, Sridhar S, van de Ven AL, Webster TJ (2017) Superparamagnetic iron oxide-encapsulating polymersome nanocarriers for biofilm eradication. Biomaterials 119:78–85.  https://doi.org/10.1016/j.biomaterials.2016.12.011CrossRefPubMedGoogle Scholar
  97. 97.
    Langowska K, Palivan CG, Meier W (2013) Polymer nanoreactors shown to produce and release antibiotics locally. Chem Commun 49:128–130.  https://doi.org/10.1039/c2cc36345cCrossRefGoogle Scholar
  98. 98.
    Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2:282–289.  https://doi.org/10.4103/0975-7406.72127CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Blasiak B, Van Veggel FCJM, Tomanek B (2013) Applications of nanoparticles for MRI cancer diagnosis and therapy. J Nanomater 2013:148578CrossRefGoogle Scholar
  100. 100.
    Lefevre S, Ruimy D, Jehl F, Neuville A, Robert P, Sordet C, Ehlinger M, Dietemann J-L, Bierry G (2011) Septic arthritis: monitoring with USPIO-enhanced macrophage MR imaging. Radiology 258:722–728.  https://doi.org/10.1148/radiol.10101272CrossRefPubMedGoogle Scholar
  101. 101.
    Neuwelt A, Sidhu N, Hu CAA, Mlady G, Eberhardt SC, Sillerud LO (2015) Iron-based superparamagnetic nanoparticle contrast agents for MRI of infection and inflammation. Am J Roentgenol 204:W302–W313.  https://doi.org/10.2214/AJR.14.12733CrossRefGoogle Scholar
  102. 102.
    Wang YXJ (2015) Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J Gastroenterol 21:13400–13402.  https://doi.org/10.3748/wjg.v21.i47.13400CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Qian W, Murakami M, Ichikawa Y, Che Y (2011) Highly efficient and controllable PEGylation of gold nanoparticles prepared by femtosecond laser ablation in water. J Phys Chem C 115:23293–23298.  https://doi.org/10.1021/jp2079567CrossRefGoogle Scholar
  104. 104.
    Hamm L, Gee A, Indrasekara ASDS (2019) Recent advancement in the surface-enhanced Raman spectroscopy-based biosensors for infectious disease diagnosis. Appl Sci 9:1448.  https://doi.org/10.3390/app9071448CrossRefGoogle Scholar
  105. 105.
    Alvand A, Rezapoor M, Parvizi J (2017) The role of biomarkers for the diagnosis of implant-related infections in orthopaedics and trauma. Adv Exp Med Biol 971:69–79CrossRefGoogle Scholar
  106. 106.
    Ge J, Neofytou E, Cahill TJ, Beygui RE, Zare RN (2012) Drug release from electric-field-responsive nanoparticles. ACS Nano 6:227–233.  https://doi.org/10.1021/nn203430mCrossRefPubMedGoogle Scholar
  107. 107.
    Kong K, Kendall C, Stone N, Notingher I (2015) Raman spectroscopy for medical diagnostics—from in-vitro biofluid assays to in-vivo cancer detection. Adv Drug Deliv Rev 89:121–134CrossRefGoogle Scholar
  108. 108.
    Stewart S, Priore RJ, Nelson MP, Treado PJ (2012) Raman Imaging. Annu Rev Anal Chem 5:337–360.  https://doi.org/10.1146/annurev-anchem-062011-143152CrossRefGoogle Scholar
  109. 109.
    Ackermann K, Bohme R, Cialla D, Dorfer T, Marz A, Moller R, Popp J, Strelau K. Surface enhanced Raman spectroscopy. http://www.photonics4life.eu/index.php/layout/set/print/Consortium/P4L-DB/All-items/Surface-enhanced-Raman-Spectroscopy
  110. 110.
    Fargašová A, Balzerová A, Prucek R, Sedláková MH, Bogdanová K, Gallo J, Kolář M, Ranc V, Zbořil R (2017) Detection of prosthetic joint infection based on magnetically assisted surface enhanced Raman spectroscopy. Anal Chem 89:6598–6607.  https://doi.org/10.1021/acs.analchem.7b00759CrossRefPubMedGoogle Scholar
  111. 111.
    Pavlou E, Zhang X, Wang J, Kourkoumelis N (2018) Raman spectroscopy for the assessment of osteoarthritis. Ann Joint 3:83–83.  https://doi.org/10.21037/aoj.2018.09.10CrossRefGoogle Scholar
  112. 112.
    Parveen S, Misra R, Sahoo SK (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine 8(2):147–166CrossRefGoogle Scholar
  113. 113.
    Jin S, Leach JC, Ye K (2009) Nanoparticle-mediated gene delivery. Methods Mol Biol.  https://doi.org/10.1007/978-1-59745-483-4_34
  114. 114.
    Cormode DP, Naha PC, Fayad ZA (2014) Nanoparticle contrast agents for computed tomography: a focus on micelles. Contrast Media Mol Imaging 9(1):37–52.  https://doi.org/10.1002/cmmi.1551CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Goldberg M, Langer R, Jia X (2007) Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed 18(3):241–268CrossRefGoogle Scholar
  116. 116.
    Elkady MF, Shokry Hassan H, Hafez EE, Fouad A (2015) Construction of zinc oxide into different morphological structures to be utilized as antimicrobial agent against multidrug resistant bacteria. Bioinorg Chem Appl 2015:536854.  https://doi.org/10.1155/2015/536854CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Khodashenas B, Ghorbani HR (2015) Synthesis of silver nanoparticles with different shapes. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.12.014
  118. 118.
    Shaalan MI, El-Mahdy MM, Theiner S, El-Matbouli M, Saleh M (2017) In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Vet Scand 59:49.  https://doi.org/10.1186/s13028-017-0317-9CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Goldman E, Zinger A, Da Silva D, Yaari Z, Kajal A, Vardi-Oknin D, Goldfeder M, Schroeder JE, Shainsky-Roitman J, Hershkovitz D, Schroeder A (2017) Nanoparticles target early-stage breast cancer metastasis in vivo. Nanotechnology 28(43):43LT01.  https://doi.org/10.1088/1361-6528/aa8a3dCrossRefPubMedGoogle Scholar
  120. 120.
    Barenholz Y (2012) Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134CrossRefGoogle Scholar
  121. 121.
    Ventola CL (2012) The nanomedicine revolution. P T 37(9):512–517, 525PubMedPubMedCentralGoogle Scholar
  122. 122.
    Parveen K, Banse V, Ledwani L (2016) Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conf Proc 1724:020048CrossRefGoogle Scholar
  123. 123.
    Skotland T, Iversen T, Sandvig K (2014) Development of nanoparticles for clinical use. Nanomedicine (Lond) 9:1295–1299CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNortheastern UniversityBostonUSA

Personalised recommendations