Advertisement

Antibacterial Coatings on Medical Implants

  • Sheetal Khatri
  • Yingchao SuEmail author
  • Donghui ZhuEmail author
Chapter
  • 91 Downloads

Abstract

Bacterial contamination has been a serious problem in every field from space missions to medicine and implants. Implant surfaces have been a hazardous site for bacterial adhesion and microbial contamination. This contamination leads to prosthetic infection which results in the necessity of continued antibiotic therapy, eventually leading to removal of the device which comes with long hospitalization time, costs, stress, and pain. Antibacterial coatings have been used as a solution to bacterial contamination. Biofilm formation, antibacterial mechanisms, and types of coating methods on medical implants are briefly described in the present review. Then, the typical antibacterial coatings, including metallic nano-coatings, ceramic coatings, and polymeric coatings, are described.

Keywords

Biofilm Antibacterial coating Hydroxyapatite Nanoparticle Biodegradable coating 

References

  1. 1.
    Eggimann P, Sax H, Pittet D (2004) Catheter-related infections. Microbes Infect 6(11):1033–1042PubMedCrossRefGoogle Scholar
  2. 2.
    Engelsman AF, van der Mei HC, Ploeg RJ, Busscher HJ (2007) The phenomenon of infection with abdominal wall reconstruction. Biomaterials 28(14):2314–2327PubMedCrossRefGoogle Scholar
  3. 3.
    Van Houdt R, Mijnendonckx K, Leys N (2012) Microbial contamination monitoring and control during human space missions. Planet Space Sci 60(1):115–120CrossRefGoogle Scholar
  4. 4.
    Kanematsu H, Barry DM (2015) Biofilm and materials science. Springer, BerlinCrossRefGoogle Scholar
  5. 5.
    Nelson GN, Davis DE, Namdari S (2016) Outcomes in the treatment of periprosthetic joint infection after shoulder arthroplasty: a systematic review. J Shoulder Elbow Surg 25(8):1337–1345PubMedCrossRefGoogle Scholar
  6. 6.
    Bandyk DF, Novotney ML, Back MR, Johnson BL, Schmacht DC (2001) Expanded application of in situ replacement for prosthetic graft infection. J Vasc Surg 34(3):411–420PubMedCrossRefGoogle Scholar
  7. 7.
    Moran E, Byren I, Atkins B (2010) The diagnosis and management of prosthetic joint infections. J Antimicrob Chemother 65(suppl_3):iii45–iii54PubMedGoogle Scholar
  8. 8.
    Papagelopoulos PJ, Partsinevelos AA, Themistocleous GS, Mavrogenis AF, Korres DS, Soucacos PN (2006) Complications after tibia plateau fracture surgery. Injury 37(6):475–484PubMedCrossRefGoogle Scholar
  9. 9.
    Campoccia D, Montanaro L, Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27(11):2331–2339PubMedCrossRefGoogle Scholar
  10. 10.
    Zhao L, Chu PK, Zhang Y, Wu Z (2009) Antibacterial coatings on titanium implants. J Biomed Mater Res B Appl Biomater 91(1):470–480PubMedCrossRefGoogle Scholar
  11. 11.
    Simchi A, Tamjid E, Pishbin F, Boccaccini A (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomed Nanotechnol Biol Med 7(1):22–39CrossRefGoogle Scholar
  12. 12.
    Cheang P, Khor K (1996) Addressing processing problems associated with plasma spraying of hydroxyapatite coatings. Biomaterials 17(5):537–544PubMedCrossRefGoogle Scholar
  13. 13.
    Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48(3):424–434CrossRefGoogle Scholar
  14. 14.
    Lindsay D, Von Holy A (2006) Bacterial biofilms within the clinical setting: what healthcare professionals should know. J Hosp Infect 64(4):313–325PubMedCrossRefGoogle Scholar
  15. 15.
    Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW (2012) Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33(26):5967–5982PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Hsu LC, Fang J, Borca-Tasciuc DA, Worobo RW, Moraru CI (2013) Effect of micro-and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Appl Environ Microbiol 79(8):2703–2712PubMedCrossRefGoogle Scholar
  17. 17.
    Chehroudi B, Brunette DM (2002) Subcutaneous microfabricated surfaces inhibit epithelial recession and promote long-term survival of percutaneous implants. Biomaterials 23(1):229–237PubMedCrossRefGoogle Scholar
  18. 18.
    Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237(4822):1588–1595PubMedCrossRefGoogle Scholar
  19. 19.
    Walkowiak-Przybyło M, Klimek L, Okrój W, Jakubowski W, Chwiłka M, Czajka A, Walkowiak B (2012) Adhesion, activation, and aggregation of blood platelets and biofilm formation on the surfaces of titanium alloys Ti6Al4V and Ti6Al7Nb. J Biomed Mater Res A 100(3):768–775PubMedCrossRefGoogle Scholar
  20. 20.
    Zhao X, Zhao F, Wang J, Zhong N (2017) Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Adv 7(58):36670–36683CrossRefGoogle Scholar
  21. 21.
    Hou S, Gu H, Smith C, Ren D (2011) Microtopographic patterns affect Escherichia coli biofilm formation on poly (dimethylsiloxane) surfaces. Langmuir 27(6):2686–2691PubMedCrossRefGoogle Scholar
  22. 22.
    Dhir S (2013) Biofilm and dental implant: the microbial link. J Indian Soc Periodontol 17(1):5PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Yuan Y, Hays MP, Hardwidge PR, Kim J (2017) Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv 7(23):14254–14261CrossRefGoogle Scholar
  24. 24.
    Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371PubMedCrossRefGoogle Scholar
  25. 25.
    Hassan MS, Amna T, Kim HY, Khil M-S (2013) Enhanced bactericidal effect of novel CuO/TiO2 composite nanorods and a mechanism thereof. Compos Part B Eng 45(1):904–910CrossRefGoogle Scholar
  26. 26.
    Li K, Xie Y, Huang L, Ji H, Zheng X (2013) Antibacterial mechanism of plasma sprayed Ca 2 ZnSi 2 O 7 coating against Escherichia coli. J Mater Sci Mater Med 24(1):171–178PubMedCrossRefGoogle Scholar
  27. 27.
    Choi J, Jang BN, Park BJ, Joung YK, Han DK (2014) Effect of solvent on drug release and a spray-coated matrix of a sirolimus-eluting stent coated with poly (lactic-co-glycolic acid). Langmuir 30(33):10098–10106PubMedCrossRefGoogle Scholar
  28. 28.
    Thomas JG, Nakaishi LA (2006) Managing the complexity of a dynamic biofilm. J Am Dent Assoc 137:S10–S15CrossRefGoogle Scholar
  29. 29.
    Gadow R, Killinger A, Stiegler N (2010) Hydroxyapatite coatings for biomedical applications deposited by different thermal spray techniques. Surf Coat Technol 205(4):1157–1164CrossRefGoogle Scholar
  30. 30.
    Hahn B-D, Park D-S, Choi J-J, Ryu J, Yoon W-H, Choi J-H, Kim H-E, Kim S-G (2011) Aerosol deposition of hydroxyapatite–chitosan composite coatings on biodegradable magnesium alloy. Surf Coat Technol 205(8-9):3112–3118CrossRefGoogle Scholar
  31. 31.
    Lima RS, Marple BR (2007) Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review. J Therm Spray Technol 16(1):40–63CrossRefGoogle Scholar
  32. 32.
    Li H, Khor K, Cheang P (2002) Titanium dioxide reinforced hydroxyapatite coatings deposited by high velocity oxy-fuel (HVOF) spray. Biomaterials 23(1):85–91PubMedCrossRefGoogle Scholar
  33. 33.
    Hearley J, Little J, Sturgeon A (2000) The effect of spray parameters on the properties of high velocity oxy-fuel NiAl intermetallic coatings. Surf Coat Technol 123(2-3):210–218CrossRefGoogle Scholar
  34. 34.
    Zeng H, Lacefield WR (2000) XPS, EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramic coatings: the effects of various process parameters. Biomaterials 21(1):23–30PubMedCrossRefGoogle Scholar
  35. 35.
    Torrisi L, Setola R (1993) Thermally assisted hydroxyapatite obtained by pulsed-laser deposition on titanium substrates. Thin Solid Films 227(1):32–36CrossRefGoogle Scholar
  36. 36.
    Mungkalasiri J, Bedel L, Emieux F, Doré J, Renaud FN, Maury F (2009) DLI-CVD of TiO2–Cu antibacterial thin films: growth and characterization. Surf Coat Technol 204(6-7):887–892CrossRefGoogle Scholar
  37. 37.
    Wolke J, Van Dijk K, Schaeken H, De Groot K, Jansen J (1994) Study of the surface characteristics of magnetron-sputter calcium phosphate coatings. J Biomed Mater Res 28(12):1477–1484PubMedCrossRefGoogle Scholar
  38. 38.
    Yang Y, Kim K-H, Ong JL (2005) A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying. Biomaterials 26(3):327–337PubMedCrossRefGoogle Scholar
  39. 39.
    Thian E, Huang J, Best S, Barber Z, Bonfield W (2005) Magnetron co-sputtered silicon-containing hydroxyapatite thin films—an in vitro study. Biomaterials 26(16):2947–2956PubMedCrossRefGoogle Scholar
  40. 40.
    Ando E, Miyazaki M (2008) Durability of doped zinc oxide/silver/doped zinc oxide low emissivity coatings in humid environment. Thin Solid Films 516(14):4574–4577CrossRefGoogle Scholar
  41. 41.
    Zhou Y, Kelly P, Postill A, Abu-Zeid O, Alnajjar A (2004) The characteristics of aluminium-doped zinc oxide films prepared by pulsed magnetron sputtering from powder targets. Thin Solid Films 447:33–39CrossRefGoogle Scholar
  42. 42.
    Le HP (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42(1):49–62Google Scholar
  43. 43.
    Jang D, Kim D, Moon J (2009) Influence of fluid physical properties on ink-jet printability. Langmuir 25(5):2629–2635PubMedCrossRefGoogle Scholar
  44. 44.
    Shah NJ, Macdonald ML, Beben YM, Padera RF, Samuel RE, Hammond PT (2011) Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials 32(26):6183–6193PubMedCrossRefGoogle Scholar
  45. 45.
    Goodman SB, Yao Z, Keeney M, Yang F (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34(13):3174–3183PubMedCrossRefGoogle Scholar
  46. 46.
    Agnihotri S, Mukherji S, Mukherji S (2013) Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver. Nanoscale 5(16):7328–7340PubMedCrossRefGoogle Scholar
  47. 47.
    Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83PubMedCrossRefGoogle Scholar
  48. 48.
    Polívková M, Hubáček T, Staszek M, Švorčík V, Siegel J (2017) Antimicrobial treatment of polymeric medical devices by silver nanomaterials and related technology. Int J Mol Sci 18(2):419CrossRefGoogle Scholar
  49. 49.
    Marassi V, Di Cristo L, Smith SG, Ortelli S, Blosi M, Costa AL, Reschiglian P, Volkov Y, Prina-Mello A (2018) Silver nanoparticles as a medical device in healthcare settings: a five-step approach for candidate screening of coating agents. R Soc Open Sci 5(1):171113PubMedCrossRefGoogle Scholar
  50. 50.
    Ciobanu G, Harja M (2019) Cerium-doped hydroxyapatite/collagen coatings on titanium for bone implants. Ceram Int 45(2):2852–2857CrossRefGoogle Scholar
  51. 51.
    Applerot G, Lellouche J, Perkas N, Nitzan Y, Gedanken A, Banin E (2012) ZnO nanoparticle-coated surfaces inhibit bacterial biofilm formation and increase antibiotic susceptibility. RSC Adv 2(6):2314–2321CrossRefGoogle Scholar
  52. 52.
    Ohtsu N, Kakuchi Y, Ohtsuki T (2018) Antibacterial effect of zinc oxide/hydroxyapatite coatings prepared by chemical solution deposition. Appl Surf Sci 445:596–600CrossRefGoogle Scholar
  53. 53.
    Liu Y, He L, Mustapha A, Li H, Hu Z, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J Appl Microbiol 107(4):1193–1201PubMedCrossRefGoogle Scholar
  54. 54.
    Harris L, Mead L, Müller-Oberländer E, Richards R (2006) Bacteria and cell cytocompatibility studies on coated medical grade titanium surfaces. J Biomed Mater Res A 78(1):50–58PubMedCrossRefGoogle Scholar
  55. 55.
    Venkateswaran S, Dos Santos ODH, Scholefield E, Lilienkampf A, Gwynne PJ, Swann DG, Dhaliwal K, Gallagher MP, Bradley M (2016) Fortified interpenetrating polymers–bacteria resistant coatings for medical devices. J Mater Chem B 4(32):5405–5411PubMedCrossRefGoogle Scholar
  56. 56.
    Mowery BP, Lee SE, Kissounko DA, Epand RF, Epand RM, Weisblum B, Stahl SS, Gellman SH (2007) Mimicry of antimicrobial host-defense peptides by random copolymers. J Am Chem Soc 129(50):15474–15476PubMedCrossRefGoogle Scholar
  57. 57.
    Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JT, Kazemzadeh-Narbat M, Yu K, Wang R, Straus SK (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32(16):3899–3909PubMedCrossRefGoogle Scholar
  58. 58.
    Skovdal SM, Jørgensen NP, Petersen E, Jensen-Fangel S, Ogaki R, Zeng G, Johansen MI, Wang M, Rohde H, Meyer RL (2018) Ultra-dense polymer brush coating reduces Staphylococcus epidermidis biofilms on medical implants and improves antibiotic treatment outcome. Acta Biomater 76:46–55PubMedCrossRefGoogle Scholar
  59. 59.
    He C, Chen Q, Yarmolenko M, Rogachev A, Piliptsou D, Jiang X, Rogachev A (2018) Structure and antibacterial activity of PLA-based biodegradable nanocomposite coatings by electron beam deposition from active gas phase. Prog Org Coat 123:282–291CrossRefGoogle Scholar
  60. 60.
    Villa MM, Wang L, Huang J, Rowe DW, Wei M (2015) Bone tissue engineering with a collagen–hydroxyapatite scaffold and culture expanded bone marrow stromal cells. J Biomed Mater Res B Appl Biomater 103(2):243–253PubMedCrossRefGoogle Scholar
  61. 61.
    Uezono M, Takakuda K, Kikuchi M, Suzuki S, Moriyama K (2013) Hydroxyapatite/collagen nanocomposite-coated titanium rod for achieving rapid osseointegration onto bone surface. J Biomed Mater Res B Appl Biomater 101(6):1031–1038PubMedCrossRefGoogle Scholar
  62. 62.
    Zhou W, Jia Z, Xiong P, Yan J, Li M, Cheng Y, Zheng Y (2018) Novel pH-responsive tobramycin-embedded micelles in nanostructured multilayer-coatings of chitosan/heparin with efficient and sustained antibacterial properties. Mater Sci Eng C 90:693–705CrossRefGoogle Scholar
  63. 63.
    Rodriguez-Torres MdP, Acosta-Torres LS, Diaz-Torres LA (2018) Heparin-based nanoparticles: an overview of their applications. J Nanomater 2018:1–8CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of North TexasDentonUSA
  2. 2.Department of Biomedical EngineeringStony Brook UniversityStony BrookUSA

Personalised recommendations