Advertisement

Antimicrobial Materials in Arthroplasty

  • Julie Shaner
  • Noreen Hickock
  • Antonia F. ChenEmail author
Chapter
  • 91 Downloads

Abstract

With an increase in the number of total joint arthroplasty procedures being performed, the number of surgical site infections (SSI) and peri-prosthetic joint infections (PJI) are also expected to increase. In addition to portending significant morbidity and mortality, the growing number of prosthetic associated infections also presents a significant social and economic burden. There are current antimicrobial resistance strategies available for clinical use and more are being developed and are in the laboratory development and testing phases. However, resistance to treatment include limited implant host interface vascularity that contributes to the inability of systemically administered antibiotics to effectively reach and exert a full effect where most needed. Recognition of the limitation of systemic antibiotics and the growing problem presented by PJI have led to more recent efforts focused on local antimicrobial control at or around surgically implanted materials. Current and developing methods of achieving prophylactic local antimicrobial control in arthroplasty include using antibiotic loaded bone cement, intrawound antibiotic powders, antiseptic lavages, biocompatible antimicrobial delivery devices and coatings, and modified implants.

Keywords

Prosthetic Joint Infection Biofilm Antibiotics Antimicrobial Antiseptic Implants Delivery devices Chitosan Hydrogel Surface Metal Coatings 

References

  1. 1.
    Berry DJ, Harmsen WS, Cabanela ME, Morrey BF (2002) Twenty-five-year survivorship of two thousand consecutive primary Charnley total hip replacements. J Bone Joint Surg Am 84:171–177CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Ranawat CS, Flynn WF Jr, Saddler S, Hansraj KK, Maynard MJ (1993) Long-term results of the total condylar knee arthroplasty: a 15-year survivorship study. Clin Orthop Relat Res 286:94-102Google Scholar
  3. 3.
    Verra W, Kernkamp W, Van Hilten J (2016) Patient satisfaction and quality of life at least 10 years after total hip or knee arthroplasty. Int J Orthop 2:5–9CrossRefGoogle Scholar
  4. 4.
    Sloan M, Premkumar A, Sheth NP (2018) Projected volume of primary total joint arthroplasty in the U.S., 2014 to 2030. J Bone Joint Surg Am 17:1455–1460.  https://doi.org/10.2106/JBJS.17.01617CrossRefGoogle Scholar
  5. 5.
    Bozic KJ, Kurtz SM, Lau E (2009) The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg Am 91:128–133.  https://doi.org/10.2106/JBJS.H.00155CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bozic KJ, Kurtz SM, Lau E (2010) The epidemiology of revision total knee arthroplasty in the United States. Clin Orthop Relat Res 468:45–51.  https://doi.org/10.1007/s11999-009-0945-0CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kurtz SM, Lau EC, Son MS, Chang ET, Zimmerli W, Parvizi J (2018) Are we winning or losing the battle with periprosthetic joint infection: trends in periprosthetic joint infection and mortality risk for the medicare population. J Arthroplasty 33:3238–3245CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lentino JR (2003) Prosthetic joint infections: bane of orthopedists, challenge for infectious disease specialists. Clin Infect Dis 36:1157–1161CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kamath AF, Ong KL, Lau E, Chan V, Vail TP, Rubash HE et al (2015) Quantifying the burden of revision total joint arthroplasty for periprosthetic infection. J Arthrop 30:1492–1497.  https://doi.org/10.1016/j.arth.2015.03.035CrossRefGoogle Scholar
  10. 10.
    Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J (2012) Economic burden of peri-prosthetic joint infection in the United States. J Arthroplast 18:394–400.  https://doi.org/10.1089/sur.2017.068.CrossRefGoogle Scholar
  11. 11.
    Zmistowski B, Karam JA, Durinka JB, Casper DS, Parvizi J (2013) Periprosthetic joint infection increases the risk of one-year mortality. J Bone Joint Surg Am 124:2177–2184.  https://doi.org/10.2106/JBJS.L.00789.CrossRefGoogle Scholar
  12. 12.
    Bozic KJ, Ries MD (2005) The impact of infection after total hip arthroplasty on hospital and surgeon resource utilization. J Bone Joint Surg Am 87(8):1746–1751PubMedGoogle Scholar
  13. 13.
    Parvizi J, Pawasarat IM, Azzam KA, Joshi A, Hansen EN, Bozic KJ (2010) Periprosthetic joint infection: the economic impact of methicillin-resistant infections. J Arthroplasty 25:103–107.  https://doi.org/10.1016/j.arth.2010.04.011CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Anis HK, Sodhi N, Klika AK, Mont MA, Barsoum WK, Higuera CA, Molloy RM (2018) Is operative time a predictor for post-operative infection in primary total knee arthroplasty? J Arthroplast 18:31150–31151.  https://doi.org/10.1016/j.arth.2018.11.022.CrossRefGoogle Scholar
  15. 15.
    Illingworth KD, Mihalko WM, Parvizi J, Sculco T, McArthur B, El Bitar Y, Saleh KJ (2013) How to minimize infection and thereby maximize patient outcomes in total joint arthroplasty: a multicenter approach: AAOS exhibit selection. J Bone Joint Surg Am 95:e50.  https://doi.org/10.2106/JBJS.L.00596CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kunutsor SK, Whitehouse MR, Blom AW, Beswick AD, INFORM Team (2016) Patient-related risk factors for periprosthetic joint infection after total joint arthroplasty: a systematic review and meta-analysis. PLoS One 11(3):e0150866.  https://doi.org/10.1371/journal.pone.0150866CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pruzansky JS, Bronson MJ, Grelsamer RP, Strauss E, Moucha CS (2014) Prevalence of modifiable surgical site infection risk factors in hip and knee joint arthroplasty patients at an urban academic hospital. J Arthroplast 29:272–276.  https://doi.org/10.1016/j.arth.2013.06.019CrossRefGoogle Scholar
  18. 18.
    Aboltins CA, Berdal JE, Casas F, Corona PS, Cuellar D, Ferrari MC, Hendershot E, Huang W, Kuo FC, Malkani A, Reyes F, Rudelli S, Safir O, Seyler T, Tan TL, Townsend R, Tuncay I, Turner D, Winkler H, Wouthuyzen-Bakker M, Yates AJ, Zahar A (2019) Hip and knee section, prevention, antimicrobials (systemic): proceedings of international consensus on orthopedic infections. J Arthroplasty 34(2S):S279–S288CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Munoz-Price LS, Birnbach DJ, Lubarsky DA et al (2012) Decreasing operating room environmental pathogen contamination through improved cleaning practice. Infect Control Hosp Epidemiol 33:897–904.  https://doi.org/10.1086/667381CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Elek SD, Conen PE (1957) The virulence of Staphylococcus pyogenes for man; a study of the problems of wound infection. Br J Exp Pathol 38:573–586PubMedPubMedCentralGoogle Scholar
  21. 21.
    Moriarty TF, Harris LG, Mooney RA, Wenke JC, Riool M, Zaat SAJ, Moter A, Schaer TP, Khanna N, Kuehl R, Alt V, Montali A, Liu J, Zeiter S, Busscher HJ, Grainger DW, Richards RG (2019) Recommendations for design and conduct of preclinical in vivo studies of orthopedic device-related infection. J Orthop Res 37:271–287CrossRefGoogle Scholar
  22. 22.
    Dastgheyb S, Hammoud S, Ketonis C, Liu AY, Fitzgerald K, Parvizi J, Purtill J, Ciccotti M, Otto M, Hickok NJ (2015a) Staphylococcal persistence due to biofilm formation in synovial fluid containing prophylactic cefazolin. Antimicrob Agents Chemother 59:2122–2128.  https://doi.org/10.1128/AAC.04579-14CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Delaney LJ, MacDonald D, Leung J, Fitzgerald K, Sevit AM, Eisenbrey JR, Patel N, Forsberg F, Kepler CK, Fang T, Kurtz SM, Hickok NJ (2019) Ultrasound-triggered antibiotic release from PEEK clips to prevent spinal fusion infection: initial evaluations. Acta Biomater 93:12–24.  https://doi.org/10.1016/j.actbio.2019.02.041CrossRefPubMedGoogle Scholar
  24. 24.
    Hickok NJ, Shapiro IM (2012) Immobilized antibiotics to prevent orthopaedic implant infections. Adv Drug Deliv Rev 64:1165–1176.  https://doi.org/10.1016/j.addr.2012.03.015CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hola V, Ruzicka F, Votava M (2006) The dynamics of Staphylococcus epidermis biofilm formation in relation to nutrition, temperature and time. Scripta Medica 79:169–174Google Scholar
  26. 26.
    Urish KL, DeMuth PW, Kwan BW, Craft DW, Ma D, Haider H, Tuan RS, Wood TK, Davis CM (2016) Antibiotic-tolerant Staphylococcus aureus biofilm persists on arthroplasty materials. Clin Orthop Relat Res 474:1649–1656.  https://doi.org/10.1007/s11999-016-4720-8CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Van den Bergh B, Fauvart M, Michiels J (2017) Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol Rev 41:219–251.  https://doi.org/10.1093/femsre/fux001CrossRefPubMedGoogle Scholar
  28. 28.
    Dastgheyb S, Shapiro IM, Hickok NJ, Otto M (2015b) Biofilms cause recalcitrance of staphylococcal joint infection to antibiotic treatment. J Infect Dis 211:641–650.  https://doi.org/10.1093/infdis/jiu514.CrossRefPubMedGoogle Scholar
  29. 29.
    Goodman SB, Yao Z, Keeney M, Yang F (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34:3174–3183CrossRefGoogle Scholar
  30. 30.
    Hendricks SK, Kwok C, Shen M, Horbett TA, Ratner BD, Bryers J (2000) Plasma-deposited membranes for controlled release of antibiotic to prevent bacterial adhesion and biofilm formation. J Biomed Mater Res 50:160–170CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gristina AG, Naylor P, Myrvik Q (1988) Infections from biomaterials and implants: a race for the surface. Med Prog Technol 14:205–224PubMedPubMedCentralGoogle Scholar
  32. 32.
    Bucholz HW, Engelbrecht H (1970) Uber die Depotwirkung einiger antibiotika bei vermischung mit dem kunstharz palacos. Chirurg 41:511–515Google Scholar
  33. 33.
    Bertazzoni Minelli E, Benini A, Magnan B, Bartolozzi P (2014) Release of gentamicin and vancomycin from temporary human hip spacer in tow stage revision of infected arthroplasty. J Antimicrobe Chemother 52:329–334Google Scholar
  34. 34.
    Murray WR (1984) Use of antibiotic-containing bone cement. Clin Orthop 190:89–95Google Scholar
  35. 35.
    Bourne RB (2004) Prophylactic use of antibiotic bone cement: an emerging standard-in the affirmative. J Arthroplast 19:69–72CrossRefGoogle Scholar
  36. 36.
    Jiranek W (2005) Antibiotic-loaded cement in total hip replacement: current indications, efficacy, and complications. Orthopedics 28:873–877CrossRefGoogle Scholar
  37. 37.
    Huiras P, Logan JK, Papadopoulos S, Whitney D (2012) Local antimicrobial administration for prophylaxis of surgical site infections. Pharmacotherapy 32:1006–1019CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Walenkamp GHIM, Vree TB, Van Rens TJ (1986) Gentamicin-PMMA beads: pharmacokinetic and nephrotoxicological study. Clin Orthop Relat Res 205:171–183Google Scholar
  39. 39.
    Chen AF, Fleischman A, Austin MS (2018) Use of intrawound antibiotics in orthopaedic surgery. JAAOS 26:371–378Google Scholar
  40. 40.
    Classen DC, Evans RS, Pestotnik SL, Horn SD, Menlove RL, Burke JP (1992) The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med 326:281–286CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hawn MT, Richman JS, Vick CC, Deierhoi RJ, Graham LA, Henderson WG, Itani KM (2013) Timing of surgical antibiotic prophylaxis and the risk of surgical site infection. JAMA Surg 148:649–657CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ghobrial GM, Cadotte DW, Williams K, Fehlings MG, Harrop JS (2015) Complications from the use of intrawound vancomycin in lumbar spinal surgery: a systematic review. Neurosurg Focus 39:E11.  https://doi.org/10.3171/2015.7.FOCUS15258CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mariappan R, Manninen P, Massicotte EM, Bhatia A (2013) Circulatory collapse after topical application of vancomycin powder during spine surgery: case report. J Neurosurg Spine 19:381–383CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Qadir R, Ochsner JL, Chimento GF, Meyer MS, Waddell B, Zavatsky JM (2014) Establishing a role for vancomycin powder application for prosthetic joint infection prevention—results of a wear simulation study. J Arthroplast 29:1449–1456.  https://doi.org/10.1016/j.arth.2014.02.012CrossRefGoogle Scholar
  45. 45.
    Antoci V, Adams CS, Hickok NJ, Shapiro IM, Parvizi J (2007) Antibiotics for local delivery systems cause skeletal cell toxicity in vitro. Clin Orthop Relat Res 462:200–206CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Edin ML, Miclau T, Lester GE, Lindsey RW, Dahners LE (1996) Effect of cefazolin and vancomycin on osteoblasts in vitro. Clin Orthop Relat Res 333:245–251CrossRefGoogle Scholar
  47. 47.
    Miclau T, Edin ML, Lester GE, Lindsey RW, Dahners LE (1995) Bone toxicity of locally applied aminoglycosides. J Orthop Trauma 9:401–406CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Cavanaugh DL, Berry J, Yarboro SR, Dahners LE (2009) Better prophylaxis against surgical site infection with local as well as systemic antibiotics: an in vivo study. J Bone Joint Surg Am 91:1907–1912CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Omrani FA, Emami M, Sarzaeem M, Zarei R, Yeganeh A (2015) The effect of intra-wound vancomycin powder application in reducing surgical site infections after total hip arthroplasty. Biosci Biotechnol Res Asia 12:2383–2386CrossRefGoogle Scholar
  50. 50.
    Blom AW, Brown J, Taylor AH, Pattision G, Whitehouse S, Bannister C (2004) Infection after total knee arthroplasty. Bone Joint J 86:688–691Google Scholar
  51. 51.
    Leaper DJ, Schultz G, Carville K, Fletcher J, Swanson T, Drake R (2012) Extending the TIME concept: what have we learned in the past 10 years. Int Wound J 9:1–19CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ripa S, Bruno R, Reder R (2002) Clinical applications of Povidone-iodine as a topical antimicrobial. Handbook of topical antimicrobials industrial applications, industrial applications in consumer products and pharmaceuticals. CRC PressGoogle Scholar
  53. 53.
    Fleischer W, Reimer K (1997) Povidone-iodine in antisepsis–state of the art. Dermatology 195:3–9CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Rackur H (1985) New aspects of mechanism of action of povidone-iodine. J Hosp Infect 6:13–23CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kanagalingam J, Feliciano R, Hah JH, Labib H, Le TA, Lin JC (2015) Practical use of povidone-iodine antiseptic in the maintenance of oral health and in the prevention and treatment of common oropharyngeal infections. Int J Clin Pract 69:1247–1256CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Wang L, Qin W, Zhou Y, Chen B, Zhao X, Zhao H, Mi E, Wang Q, Ning J (2017) Transforming growth factor β plays an important role in enhancing wound healing by topical application of Povidone-iodine. Sci Rep 20:991.  https://doi.org/10.1038/s41598-017-01116-5CrossRefGoogle Scholar
  57. 57.
    Schultz GS, Sibbald RG, Falanga V, Ayello EA, Dowsett C, Harding K, Romanelli M, Stacey MC, Teot L, Vanscheidt W (2003) Wound bed preparation: a systematic approach to wound management. Wound Repair Regen 11:S1–S28CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Brown NM, Cipriano CA, Moric M, Sporer SM, Della Valle CJ (2012) Dilute betadine lavage before closure for the prevention of acute postoperative deep periprosthetic joint infection. J Arthroplast 27:27–30.  https://doi.org/10.1016/j.arth.2011.03.034CrossRefGoogle Scholar
  59. 59.
    Mohammadi Z, Abbott PV (2009) The properties and applications of chlorhexidine in endodontics. Int Endod J 42:288–302.  https://doi.org/10.1111/j.1365-2591.2008.01540.xCrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lim KS, Kam PC (2008) Chlorhexidine-pharmacology and clinical applications. Anesth Intensive Care 36:502–512CrossRefGoogle Scholar
  61. 61.
    Kuyyakanond T, Quesnel LB (1992) The mechanism of action of chlorhexidine FEMS. Microbiol Lett 100(1–3):211CrossRefGoogle Scholar
  62. 62.
    Brennan SS, Foster ME, Leaper DJ (1986) Antiseptic toxicity in wounds healing by secondary intention. J Hosp Infect 8:263–267CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Han Y, Giannitsios D, Duke K, Steffen T, Burman M (2011) Biomechanical analysis of chlorhexidine power irrigation to disinfect contaminated anterior cruciate ligament grafts. Am J Sports Med 39:1528–1533.  https://doi.org/10.1177/0363546511401175CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Hetrick EM, Schoenfisch MH (2006) Reducing implant-related infections: active release strategies. Chem Soc Rev 35:780–789CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zaborowska M, Welch K, Branemark R, Khalilpour P, Engqvist H, Thomsen P, Trobos M (2015) Bacteria-material surface interactions: methodological development for the assessment of implant surface induced antibacterial effects. J Biomed Mater Res 103:179–187.  https://doi.org/10.1002/jbm.b.33179CrossRefGoogle Scholar
  66. 66.
    Bixler GD, Theiss A, Bhushan B, Le SC (2014) Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. J Colloid Interface Sci 419:114–133CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Jaggessar A, Shahali H, Mathew A, Yarlagadda PKDV (2017) Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J Nanobiotechnol 15:64.  https://doi.org/10.1186/s12951-017-0306-1CrossRefGoogle Scholar
  68. 68.
    Mann EE, Manna D, Mettetal MR, May RM, Dannemiller EM, Chung KK, Brennan AB, Reddy ST (2014) Surface micropattern limits bacterial contamination. Antimicrob Resist Infect Control 3:28CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Xu B, Wei Q, Mettetal MR, Han J, Rau L, Tie J, May RM, Pathe ET, Reddy ST, Sullivan L, Parker AE, Maul DH, Brennan AB, Mann EE (2017) Surface micropattern reduces colonization and medical device-associated infections. J Med Microbiol 66:1692–1698CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Hasan J, Chatterjee K (2015) Recent advances in engineering topography mediated antibacterial surfaces. Nanoscale 7:15568–15575CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Deupree SM, Schoenfisch MH (2009) Morphological analysis of the antimicrobial action of nitric oxide on Gram-negative pathogens using atomic force microscopy. Acta Biomater 5:1405–1415CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Hickok NJ, Ketonis C, Adams CS (2017) Tethered antibiotics. In: Ducheyne P, Healy KE, Hutmacher DW, Grainger DW, Kirkpatrick CJ (eds) Comprehensive biomaterials, 2nd edn. ElsevierGoogle Scholar
  73. 73.
    Bernthal NM, Stavrakis AI, Billi F, Cho JS, Kremen TJ, Simon SI, Cheung AL, Finerman GA, Lieberman JR, Adams JS, Miller LS (2010) A mouse model of post-arthroplasty Staphylococcus aureus joint infection to evaluate in vivo the efficacy of antimicrobial implant coatings. PLoS One 5(9):e12580.  https://doi.org/10.1371/journal.pone.0012580.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Corvec S, Portillo ME, Pasticci BM, Borens O, Trampuz A (2012) Epidemiology and new developments in the diagnosis of prosthetic joint infection. Int J Artif Organs 35:923–934CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Ratner BD, Schoen FJ (2013) The concept and assessment of biocompatibility. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (eds) Biomaterials science: an introduction to materials in medicine, 3rd edn. Elsevier, Amsterdam, The NetherlandsGoogle Scholar
  76. 76.
    Jose B, Antoci V, Zeiger AR, Wickstro E, Hickok NJ (2005) Vancomycin covalently bonded to titanium beads kills Staphylococcus aureus. Chem Biol 12:1041–1048CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Lawson MC, Bowman CN, Anseth KS (2007) Vancomycin derivative photopolymerized to titanium kills S. epidermidis. Clin Orthop Relat Res 461:96–105PubMedPubMedCentralGoogle Scholar
  78. 78.
    Parvizi J, Wickstrom E, Zeiger AR, Adams CS, Shapiro IM, Purtill JJ, Sharkey PF, Hozack WJ, Rothman RH, Hickok NJ (2004) Frank Stinchfield Award. Titanium surface with biologic activity against infection. Clin Orthop Relat Res 429:33–38CrossRefGoogle Scholar
  79. 79.
    Antoci V, Adams CS, Parvizi J, Davidson HM, Composto RJ, Freeman TA, Wickstrom E, Zeiger AR, Ducheyne P, Jungkind D, Shapiro IM, Hickok NJ (2008) Vancomycin-modified Ti alloy inhibits S. epidermidis biofilm formation: implications for treatment of periprosthetic infection. Biomaterials 29:4684–4690CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Ketonis C, Barr S, Adams CS, Shapiro IM, Parvizi J, Hickok NJ (2011) Vancomycin bonded to bone grafts prevents bacterial colonization. Antimicrob Agents Chemother 55:487–494CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Stewart S, Barr S, Engiles J, Hickok N, Shapiro IM, Richardson DW, Parvizi J, Schaer TP (2012) Vancomycin-modified implant surface inhibits biofilm formation and supports bone healing in an infected osteotomy model in sheep—a proof-of concept-study. J Bone Joint Surg Am 94:1406–1141CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    de la Fuente-Núñez C, Cardoso MH, de Souza Cândido E, Franco OL, Hancock RE (2016) Synthetic antibiofilm peptides. Biochim Biophys Acta 1858(5):1061–1069Google Scholar
  83. 83.
    Gabriel M, Nazmi K, Veerman EC, Nieuw Amerongen AV, Zentner A (2006) Preparation of LL-37-grafted titanium surfaces with bactericidal activity. Bioconjug Chem 17:548–550CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Humblot V, Yala JF, Thebault P, Boukerma K, Hequet A, Berjeaud JM, Pradier CM (2009) The antibacterial activity of Magainin I immobilized onto mixed thiols self-assembled monolayers. Biomaterials 30:3503–3512CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Khoo X, Hamilton P, O’Toole GA, Snyder BD, Kenan DJ, Grinstaff MW (2009) Directed assembly of PEGylated-peptide coatings for infection-resistant titanium metal. J Am Chem Soc 131:10992–10997CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Kwiecinski J, Na M, Jarneborn A, Jacobsson G, Peetermans M, Verhamme P, Jin T (2015) Tissue plasminogen activator coating on implant surfaces reduces Staphylococcus aureus biofilm formation. Appl Environ Microbiol 82:394–401.  https://doi.org/10.1128/AEM.02803-15CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Suhardi VJ, Bichara DA, Kwok SJJ, Freiberg AA, Rubash H, Malchau H, Yun SH, Muratoglu OK, Oral E (2017) A fully functional drug-eluting joint implant. Nat Biomed Eng 1:80.  https://doi.org/10.1038/s41551-017-0080CrossRefGoogle Scholar
  88. 88.
    Overstreet D, McLaren A, Calara F, Vernon B, McLemore R (2015) Local gentamicin delivery from resorbable viscous hydrogels is therapeutically effective. Clin Orthop Relat Res 473:337–347CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Romano CL, Malizos K, Capuano C, Mezzoprete R, D’Arienzo M, Van Der Straeten C, Scarponi S, Drago L (2016) Does an antibiotic-loaded hydrogel coating reduce early post-surgical infection after joint arthroplasty? J Bone Joint Infect 19:34–41.  https://doi.org/10.7150/jbji.15986CrossRefGoogle Scholar
  90. 90.
    Di Martino A, Sittinger M, Risbud MV (2005) A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26:5983–5990CrossRefGoogle Scholar
  91. 91.
    Patel KD, Singh RK, Lee EJ, Han CM, Won JE (2014) Tailoring solubility and drug release from electrophoretic deposited chitosan-gelatin films on titanium. Surf Coat Technol 242:232–236CrossRefGoogle Scholar
  92. 92.
    Pishbin F, Mourino V, Flor S, Kreppel S, Salih V, Ryan MP, Boccaccini AR (2014) Electrophoretic deposition of gentamicin-loaded glass/chitosan composite coatings for orthopaedic implants. ACS Appl Mater Interfaces 11:8796–8806.  https://doi.org/10.1021/am5014166.CrossRefGoogle Scholar
  93. 93.
    Chua PH, Neoh KG, Shi Z, Kang ET (2008) Structural stability and bio-applicability assessment of hyaluronic acid-chitosan polyelectrolyte multilayers on titanium substrates. J Biomed Mater Res 87:1061–1074CrossRefGoogle Scholar
  94. 94.
    Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology 15(1):65Google Scholar
  95. 95.
    Ricketts CR, Lowbury EJ, Lawrence JC, Hall M, Wilkins MD (1970) Mechanism of prophylaxis by silver compounds against infection of burns. Br Med J 23:444–446CrossRefGoogle Scholar
  96. 96.
    Thurman RB, Gerba CP (1989) The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit Rev Environ Control 18:259–315CrossRefGoogle Scholar
  97. 97.
    Mauerer A, Stenglein S, Schulz-Drost S, Schorner C, Taylor D, Krinner S, Heidenau F, Adler W, Forst R (2017) Antibacterial effect of a 4x Cu-TiO2 coating simulating acute periprosthetic infection—an animal model. Molecules 22(7):1042.  https://doi.org/10.3390/molecules22071042CrossRefGoogle Scholar
  98. 98.
    Elguindi J, Wagner J, Rensing C (2009) Genes involved in copper resistance influence survival of Pseudomonas aeruginosa on copper surfaces. J Appl Microbiol 106:1448–1455CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11:371–384CrossRefGoogle Scholar
  100. 100.
    Kumari M, Pandey S, Giri VP, Bhattacharya A, Shukla R, Mishra A, Nautiyal CS (2017) Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria. Microb Pathog 105:346–355CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Chernousova S, Epple M (2013) Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl 52:1636–1653CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Moseke C, Gbureck U, Elter P, Drechsler P, Zoll A, Thull R, Ewald A (2011) Hard implant coatings with antimicrobial properties. J Mater Sci Mater Med 22:2711–2720CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, winship PD, Reid HJ (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemoth 54:1019–1024CrossRefGoogle Scholar
  104. 104.
    Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL (2006) In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27:5512–5517CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Feng QL, Kim TN, Wu J, Park ES, Kim JO, Lim DY, Cui FZ (1998) Antibacterial effects of Ag-Hap thin films on alumina substrates. Thin Solid Films 335:214–219CrossRefGoogle Scholar
  106. 106.
    Łapaj Ł, Woźniak W, Markuszewski J (2018) Osseointegration of hydroxyapatite coatings doped with silver nanoparticles: scanning electron microscopy studies on a rabbit model. Folia Morphol (Warsz) 78(1):107–113.  https://doi.org/10.5603/FM.a2018.0055CrossRefGoogle Scholar
  107. 107.
    Zhang Y, Dong C, Yang S, Chiu TW, Wu J, Xiao K, Huang Y, Li X (2018) Enhanced silver loaded antibacterial titanium implant coating with novel hierarchical effect. J Biomater Appl 32:1289–1299.  https://doi.org/10.1177/0885328218755538CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Hardes J, Ahrens H, Gebert C, Streitbuerger A, Buerger H, Erren M, Gunsel A, Wedemeyer C, Saxler G, Winkelmann W, Gosheger G (2007) Lack of toxicological side-ffects in silver-coated megaprostheses in humans. Biomaterials 28:2869–2875CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Hardes J, von Eiff C, Streitbuerger A, Balke M, Budny T, Henrichs MP, Hauschild G, Ahrens H (2010) Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J Surg Oncol 101:389–395PubMedPubMedCentralGoogle Scholar
  110. 110.
    Glehr M, Leithner A, Friesenbichler J, Goessler W, Avian A, Andreou D, Et a (2013) Argyria following the use of silver-coated megaprostheses: no association between the development of local argyria and elevated silver levels. Bone Joint J 95:988–992CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Parry MC, Laitinen MK, Albergo JI, Gaston CL, Stevenson JD, Grimer RJ, Jeys LM (2018) Silver-coated (Agluna®) tumour prostheses can be a protective factor against infection in high risk failure patients. Eur J Surg Oncol 18:32031–32036.  https://doi.org/10.1016/j.ejso.2018.12.009.CrossRefGoogle Scholar
  112. 112.
    Wafa H, Grimer RJ, Reddy K, Jeys L, Abudu A, Carter SR et al (2015) Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: case-control study. Bone Joint J 97:252–257CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Holinka J, Pilz M, Kubista B, Presterl E, Windhager R (2013) Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth. Bone Joint J 95:678–682CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Oduwole KO, Glynn AA, Molony DC et al (2010) Anti-biofilm activity of sub inhibitiory povidone-iodine concentrations against staphylococcus epidermidis and Staphylococcus aureus. J Orthop Res 28:1252–1256CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Haley CE, Marling-Carson M, Smith JW, Luby JP, Mackowiak PA (1985) Bactericidal activity of antiseptics against methicillin-resistant Staphylococcus aureus. J Clin Microbiol 21:991CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Tsuchiya H, Shirai T, Nishida H, Murakami H, Kabata T, Yamamoto N, Watanabe K, Nakase J (2012) Innovative antimicrobial coating of titanium implants with iodine. J Orthop Sci 17:595–604CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Mandell JB, Deslouches B, Montelaro RC, Shanks RMQ, Doi Y, Urish KL (2017) Elimination of antibiotic resistant surgical implant biofilms using and engineered cationic amphipathic peptide WLBU2. Sci Rep 22:18098.  https://doi.org/10.1038/s41598-017-17780-6
  118. 118.
    Shi M, de Mesy Bentley KL, Palui G, Mattoussi H, Elder A, Yang H (2017) The roles of surface chemistry, dissolution rate, and delivered dose in the cytotoxicity of copper nanoparticles. Nanoscale 9(14):4739–4750Google Scholar
  119. 119.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322Google Scholar
  120. 120.
    Lipsky BA, Hoey C (2009) Topical antimicrobial therapy for treating chronic wounds. Clin Infect Dis 49:1541–1549CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Leaper DJ, Durani D (2008) Topical antimicrobial therapy of chronic wounds healing by secondary intention using iodine products. Int Wound J 5:361–368CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    van Meurs SJ, Gawlitta D, Heemstra KA, Poolman RW, Vogely HC, Kruyt MC (2014) Selection of an optimal antiseptic solution for intraoperative irrigation: an in vitro study. J Bone Joint Surg Am 96:285–291CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Chu PK, Liu X (2008) Biomaterials fabrication and processing handbook. CRC Press, Taylor & Francis Group, Boca Raton, FL, p ixCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Julie Shaner
    • 1
  • Noreen Hickock
    • 2
  • Antonia F. Chen
    • 3
    Email author
  1. 1.Temple University HospitalPhiladelphiaUSA
  2. 2.Thomas Jefferson University HospitalPhiladelphiaUSA
  3. 3.Brigham and Women’s HospitalBostonUSA

Personalised recommendations