Advertisement

Peptide-functionalized Biomaterials with Osteoinductive or Anti-biofilm Activity

  • Jennifer PattersonEmail author
Chapter
  • 123 Downloads

Abstract

Peptides are short sequences of amino acids. Peptides with biological functionality can be derived from the active domain of proteins or determined from peptide screening experiments. Combined with modern chemical techniques to facilitate peptide synthesis, this leads to peptide modification as an interesting approach to render synthetic biomaterials bioactive. Peptides have been used to functionalize implant surfaces as well as bulk biomaterials, and they can be incorporated within controlled release systems. This chapter considers both osteoinductive peptides and anti-biofilm peptides with the goals to improve bone regeneration and reduce implant-associated infection, respectively.

Keywords

Peptide synthesis Phage display Surface modification Hydrogels Nanofibers Titanium Controlled release Osteoinductive peptides Osteogenic differentiation Bone morphogenetic protein Osteogenic growth peptide Hydroxyapatite Antimicrobial peptides Anti-biofilm Bone tissue engineering Dentistry 

Notes

Acknowledgments

This work in the research group of the author has been partially supported by the Research Foundation Flanders (FWO), grant number G.0B39.14, and the special research fund of the KU Leuven, grant numbers CREA/13/017 and IDO/13/016. The author also gratefully acknowledges the interesting discussions about peptide-functionalized biomaterials and protein engineering over the years with the members of her research group, particularly Dr. Al Halifa Soultan, Dr. Susanna Piluso, Dr. Abhijith Kudva, Burak Toprakhisar, and Christian Garcia Abrego, as well as her former mentors Prof. Jeffrey Hubbell, Prof. Patrick Stayton, and Prof. Michael Hecht.

References

  1. 1.
    Kamtekar S, Schiffer JM, Xiong H, Babik JM, Hecht MH (1993) Protein design by binary patterning of polar and nonpolar amino acids. Science 262:1680.  https://doi.org/10.1126/science.8259512CrossRefGoogle Scholar
  2. 2.
    West MW, Wang W, Patterson J, Mancias JD, Beasley JR, Hecht MH (1999) De novo amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci U S A 96:11211–11216.  https://doi.org/10.1073/pnas.96.20.11211CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16:1385–1393.  https://doi.org/10.1016/0142-9612(95)96874-YCrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Collier JH, Messersmith PB (2004) Self-assembling polymer–peptide conjugates: nanostructural tailoring. Adv Mater 16:907–910.  https://doi.org/10.1002/adma.200306379CrossRefGoogle Scholar
  5. 5.
    Hauser CAE et al (2011) Natural tri- to hexapeptides self-assemble in water to amyloid β-type fiber aggregates by unexpected α-helical intermediate structures. Proc Natl Acad Sci U S A 108:1361.  https://doi.org/10.1073/pnas.1014796108CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ruoslahti E (1996) RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 12:697–715.  https://doi.org/10.1146/annurev.cellbio.12.1.697CrossRefGoogle Scholar
  7. 7.
    DeForest CA, Polizzotti BD, Anseth KS (2009) Sequential click reactions for synthesizing and patterning three-dimensional cell microenvironments. Nat Mater 8:659.  https://doi.org/10.1038/nmat2473CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Andukuri A, Minor WP, Kushwaha M, Anderson JM, Jun H-W (2010) Effect of endothelium mimicking self-assembled nanomatrices on cell adhesion and spreading of human endothelial cells and smooth muscle cells. Nanomedicine 6:289–297.  https://doi.org/10.1016/j.nano.2009.09.004CrossRefGoogle Scholar
  9. 9.
    Dalet-Fumeron V, Boudjennah L, Pagano M (1998) Binding of the cysteine proteinases papain and cathepsin B-like to coated laminin: use of synthetic peptides from laminin and from the laminin binding region of the β1Integrin subunit to characterize the binding site. Arch Biochem Biophys 358:283–290.  https://doi.org/10.1006/abbi.1998.0868CrossRefGoogle Scholar
  10. 10.
    Massia SP, Hubbell JA (1991) Human endothelial cell interactions with surface-coupled adhesion peptides on a nonadhesive glass substrate and two polymeric biomaterials. J Biomed Mater Res 25:223–242CrossRefGoogle Scholar
  11. 11.
    Gobin AS, West JL (2003) Val-Ala-Pro-Gly, an elastin-derived non-integrin ligand: smooth muscle cell adhesion and specificity. J Biomed Mater Res A 67A:255–259.  https://doi.org/10.1002/jbm.a.10110CrossRefGoogle Scholar
  12. 12.
    Chen S et al (2015b) A laminin mimetic peptide SIKVAV-conjugated chitosan hydrogel promoting wound healing by enhancing angiogenesis, re-epithelialization and collagen deposition. J Mater Chem B 3:6798–6804.  https://doi.org/10.1039/C5TB00842ECrossRefGoogle Scholar
  13. 13.
    Davel LE, Puricelli LI, Del Carmen M, Vidal C, De Lorenzo MS, Sacerdote de Lustig E, Bal de Kier Joffe ED (1999) Soluble factors from the target organ enhance tumor cell angiogenesis: role of laminin SIKVAV sequence. Oncol Rep 6:907–918Google Scholar
  14. 14.
    Maeda T, Oyama R, Titani K, Sekiguchi K (1993) Engineering of artificial cell-adhesive proteins by grafting EILDVPST sequence derived from fibronectin the. J Biochem 113:29–35CrossRefGoogle Scholar
  15. 15.
    Moyano JV et al (1997) Fibronectin type III5 repeat contains a novel cell adhesion sequence, KLDAPT, which binds activated α4β1 and α4β7 integrins. J Biol Chem 272:24832–24836CrossRefGoogle Scholar
  16. 16.
    Woods A, McCarthy JB, Furcht LT, Couchman JR (1993) A synthetic peptide from the COOH-terminal heparin-binding domain of fibronectin promotes focal adhesion formation. Mol Biol Cell 4:605–613CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Feng Y, Mrksich M (2004) The synergy peptide PHSRN and the adhesion peptide RGD mediate cell adhesion through a common mechanism. Biochemistry 43:15811–15821.  https://doi.org/10.1021/bi049174+CrossRefGoogle Scholar
  18. 18.
    Lee ST et al (2010) Engineering integrin signaling for promoting embryonic stem cell self-renewal in a precisely defined niche. Biomaterials 31:1219–1226.  https://doi.org/10.1016/j.biomaterials.2009.10.054CrossRefGoogle Scholar
  19. 19.
    Yokosaki Y et al (1998) Identification of the ligand binding site for the integrin α9β1 in the third fibronectin type III repeat of tenascin-C. J Biol Chem 273:11423–11428CrossRefGoogle Scholar
  20. 20.
    Massia SP, Hubbell JA (1992) Vascular endothelial cell adhesion and spreading promoted by the peptide REDV of the IIICS region of plasma fibronectin is mediated by integrin alpha 4 beta 1. J Biol Chem 267:14019–14026Google Scholar
  21. 21.
    Nagase H, Fields GB (1996) Human matrix metalloproteinase specificity studies using collagen sequence-based synthetic peptides. Biopolymers 40:399–416.  https://doi.org/10.1002/(SICI)1097-0282(1996)40:4<399::AID-BIP5>3.0.CO;2-RCrossRefGoogle Scholar
  22. 22.
    Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, Hubbell JA (2003a) Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci U S A 100:5413.  https://doi.org/10.1073/pnas.0737381100CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Müller R, Hubbell JA (2003b) Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol 21:513.  https://doi.org/10.1038/nbt818CrossRefGoogle Scholar
  24. 24.
    Smith GP, Petrenko VA (1997) Phage display. Chem Rev 97:391–410.  https://doi.org/10.1021/cr960065dCrossRefGoogle Scholar
  25. 25.
    Winter GP, James K, Potter G (1989) Antibody engineering. Philos Trans R Soc Lond B Biol Sci 324:537–547.  https://doi.org/10.1098/rstb.1989.0066CrossRefGoogle Scholar
  26. 26.
    Desch KC et al (2015) Probing ADAMTS13 substrate specificity using phage display. PLoS One 10:e0122931.  https://doi.org/10.1371/journal.pone.0122931CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Turk BE, Huang LL, Piro ET, Cantley LC (2001) Determination of protease cleavage site motifs using mixture-based oriented peptide libraries. Nat Biotechnol 19:661–667.  https://doi.org/10.1038/90273CrossRefGoogle Scholar
  28. 28.
    Songyang Z, Blechner S, Hoagland N, Hoekstra MF, Piwnica-Worms H, Cantley LC (1994) Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr Biol 4:973–982.  https://doi.org/10.1016/S0960-9822(00)00221-9CrossRefGoogle Scholar
  29. 29.
    Songyang Z et al (1997) Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275:73–77CrossRefGoogle Scholar
  30. 30.
    Songyang Z et al (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778.  https://doi.org/10.1016/0092-8674(93)90404-ECrossRefGoogle Scholar
  31. 31.
    Yaffe MB et al (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91:961–971.  https://doi.org/10.1016/S0092-8674(00)80487-0CrossRefGoogle Scholar
  32. 32.
    Boulware KT, Daugherty PS (2006) Protease specificity determination by using cellular libraries of peptide substrates (CLiPS). Proc Natl Acad Sci U S A 103:7583.  https://doi.org/10.1073/pnas.0511108103CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen EI, Kridel SJ, Howard EW, Li W, Godzik A, Smith JW (2002) A unique substrate recognition profile for matrix metalloproteinase-2. J Biol Chem 277:4485–4491.  https://doi.org/10.1074/jbc.M109469200CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Smith MM, Shi L, Navre M (1995) Rapid identification of highly active and selective substrates for Stromelysin and Matrilysin using bacteriophage peptide display libraries. J Biol Chem 270:6440–6449CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Pan W, Arnone M, Kendall M, Grafstrom RH, Seitz SP, Wasserman ZR, Albright CF (2003) Identification of peptide substrates for human MMP-11 (Stromelysin-3) using phage display. J Biol Chem 278:27820–27827CrossRefGoogle Scholar
  36. 36.
    Deng S-J et al (2000) Substrate specificity of human collagenase 3 assessed using a phage-displayed peptide library. J Biol Chem 275:31422–31427.  https://doi.org/10.1074/jbc.M004538200CrossRefGoogle Scholar
  37. 37.
    Shuichi O, Kazutaka M, Yoshikazu S, Ken-ichi M, Konstanty W, Yuji Y (2001) Substrate phage as a tool to identify novel substrate sequences of proteases. Comb Chem High Throughput Screen 4:573–583.  https://doi.org/10.2174/1386207013330788CrossRefGoogle Scholar
  38. 38.
    Patterson J, Hubbell JA (2010) Enhanced proteolytic degradation of molecularly engineered PEG hydrogels in response to MMP-1 and MMP-2. Biomaterials 31:7836–7845.  https://doi.org/10.1016/j.biomaterials.2010.06.061CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Patterson J, Hubbell JA (2011) SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels. Biomaterials 32:1301–1310.  https://doi.org/10.1016/j.biomaterials.2010.10.016CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149–2154.  https://doi.org/10.1021/ja00897a025CrossRefGoogle Scholar
  41. 41.
    Mäde V, Els-Heindl S, Beck-Sickinger AG (2014) Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein J Org Chem 10:1197–1212.  https://doi.org/10.3762/bjoc.10.118CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Vanier GS (2013) Microwave-assisted solid-phase peptide synthesis based on the Fmoc protecting group strategy (CEM). In: Jensen KJ, Tofteng Shelton P, Pedersen SL (eds) Peptide synthesis and applications. Humana Press, Totowa, pp 235–249.  https://doi.org/10.1007/978-1-62703-544-6_17CrossRefGoogle Scholar
  43. 43.
    Ramesh S, de la Torre BG, Albericio F, Kruger HG, Govender T (2017) Microwave-assisted synthesis of antimicrobial peptides. In: Hansen PR (ed) Antimicrobial peptides: methods and protocols. Springer, New York, pp 51–59.  https://doi.org/10.1007/978-1-4939-6737-7_4CrossRefGoogle Scholar
  44. 44.
    Chen M, Heimer P, Imhof D (2015a) Synthetic strategies for polypeptides and proteins by chemical ligation. Amino Acids 47:1283–1299.  https://doi.org/10.1007/s00726-015-1982-5CrossRefGoogle Scholar
  45. 45.
    Clancy KW, Melvin JA, McCafferty DG (2010) Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Pept Sci 94:385–396.  https://doi.org/10.1002/bip.21472CrossRefGoogle Scholar
  46. 46.
    Schmohl L, Schwarzer D (2014) Chemo-enzymatic three-fragment assembly of semisynthetic proteins. J Pept Sci 20:145–151.  https://doi.org/10.1002/psc.2600CrossRefGoogle Scholar
  47. 47.
    Chang TK, Jackson DY, Burnier JP, Wells JA (1994) Subtiligase: a tool for semisynthesis of proteins. Proc Natl Acad Sci U S A 91:12544.  https://doi.org/10.1073/pnas.91.26.12544CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tan X, Yang R, Liu C-F (2018) Facilitating Subtiligase-catalyzed peptide ligation reactions by using peptide thioester substrates. Org Lett 20:6691–6694.  https://doi.org/10.1021/acs.orglett.8b02747CrossRefGoogle Scholar
  49. 49.
    Boda SK et al (2019) Mineralized nanofiber segments coupled with calcium-binding BMP-2 peptides for alveolar bone regeneration. Acta Biomater 85:282–293.  https://doi.org/10.1016/j.actbio.2018.12.051CrossRefGoogle Scholar
  50. 50.
    Weng L, Boda SK, Wang H, Teusink MJ, Shuler FD, Xie J (2018) Novel 3D hybrid nanofiber aerogels coupled with BMP-2 peptides for cranial bone regeneration. Adv Healthc Mater 7:e1701415.  https://doi.org/10.1002/adhm.201701415CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Leight JL, Alge DL, Maier AJ, Anseth KS (2013) Direct measurement of matrix metalloproteinase activity in 3D cellular microenvironments using a fluorogenic peptide substrate. Biomaterials 34:7344–7352.  https://doi.org/10.1016/j.biomaterials.2013.06.023CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Sakiyama SE, Schense JC, Hubbell JA (1999) Incorporation of heparin-binding peptides into fibrin gels enhances neurite extension: an example of designer matrices in tissue engineering. FASEB J 13:2214–2224CrossRefGoogle Scholar
  53. 53.
    Schense JC, Hubbell JA (1999) Cross-linking exogenous bifunctional peptides into fibrin gels with factor XIIIa. Bioconjug Chem 10:75–81.  https://doi.org/10.1021/bc9800769CrossRefGoogle Scholar
  54. 54.
    Ehrbar M, Rizzi SC, Schoenmakers RG, San Miguel B, Hubbell JA, Weber FE, Lutolf MP (2007) Biomolecular hydrogels formed and degraded via site-specific enzymatic reactions. Biomacromolecules 8:3000–3007.  https://doi.org/10.1021/bm070228fCrossRefGoogle Scholar
  55. 55.
    Zhu J, Tang C, Kottke-Marchant K, Marchant RE (2009) Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconjug Chem 20:333–339.  https://doi.org/10.1021/bc800441vCrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Maia FR, Barbosa M, Gomes DB, Vale N, Gomes P, Granja PL, Barrias CC (2014) Hydrogel depots for local co-delivery of osteoinductive peptides and mesenchymal stem cells. J Control Release 189:158–168.  https://doi.org/10.1016/j.jconrel.2014.06.030CrossRefGoogle Scholar
  57. 57.
    Phelps EA et al (2012) Maleimide cross-linked bioactive PEG hydrogel exhibits improved reaction kinetics and cross-linking for cell encapsulation and in situ delivery. Adv Mater 24:64–70.  https://doi.org/10.1002/adma.201103574CrossRefGoogle Scholar
  58. 58.
    Gentile P, Ferreira AM, Callaghan JT, Miller CA, Atkinson J, Freeman C, Hatton PV (2017) Multilayer nanoscale encapsulation of biofunctional peptides to enhance bone tissue regeneration in vivo. Adv Healthc Mater 6:1601182.  https://doi.org/10.1002/adhm.201601182CrossRefGoogle Scholar
  59. 59.
    Cao F-Y, Yin W-N, Fan J-X, Zhuo R-X, Zhang X-Z (2015) A novel function of BMHP1 and cBMHP1 peptides to induce the osteogenic differentiation of mesenchymal stem cells. Biomater Sci 3:345–351.  https://doi.org/10.1039/C4BM00300DCrossRefGoogle Scholar
  60. 60.
    Hou R et al (2018) Novel osteogenic growth peptide C-terminal pentapeptide grafted poly(d,l-lactic acid) improves the proliferation and differentiation of osteoblasts: the potential bone regenerative biomaterial. Int J Biol Macromol 119:874–881.  https://doi.org/10.1016/j.ijbiomac.2018.08.010CrossRefGoogle Scholar
  61. 61.
    Li S, Xu Y, Yu J, Becker ML (2017) Enhanced osteogenic activity of poly(ester urea) scaffolds using facile post-3D printing peptide functionalization strategies. Biomaterials 141:176–187.  https://doi.org/10.1016/j.biomaterials.2017.06.038CrossRefGoogle Scholar
  62. 62.
    Soultan AH, Verheyen T, Smet M, De Borggraeve WM, Patterson J (2018) Synthesis and peptide functionalization of hyperbranched poly(arylene oxindole) towards versatile biomaterials. Polym Chem 9:2775–2784.  https://doi.org/10.1039/C8PY00139ACrossRefGoogle Scholar
  63. 63.
    Bain JL, Bonvallet PP, Abou-Arraj RV, Schupbach P, Reddy MS, Bellis SL (2015) Enhancement of the regenerative potential of anorganic bovine bone graft utilizing a polyglutamate-modified BMP2 peptide with improved binding to calcium-containing materials. Tissue Eng Part A 21:2426–2436.  https://doi.org/10.1089/ten.tea.2015.0160CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Cao Q, He Z, Sun WQ, Fan G, Zhao J, Bao N, Ye T (2019) Improvement of calcium phosphate scaffold osteogenesis in vitro via combination of glutamate-modified BMP-2 peptides. Mater Sci Eng C Mater Biol Appl 96:412–418.  https://doi.org/10.1016/j.msec.2018.11.048CrossRefGoogle Scholar
  65. 65.
    Culpepper BK, Webb WM, Bonvallet PP, Bellis SL (2014) Tunable delivery of bioactive peptides from hydroxyapatite biomaterials and allograft bone using variable-length polyglutamate domains. J Biomed Mater Res A 120A:1008–1016.  https://doi.org/10.1002/jbm.a.34766CrossRefGoogle Scholar
  66. 66.
    Sawyer AA, Weeks DM, Kelpke SS, McCracken MS, Bellis SL (2005) The effect of the addition of a polyglutamate motif to RGD on peptide tethering to hydroxyapatite and the promotion of mesenchymal stem cell adhesion. Biomaterials 26:7046–7056.  https://doi.org/10.1016/j.biomaterials.2005.05.006CrossRefGoogle Scholar
  67. 67.
    Gilbert M, Giachelli CM, Stayton PS (2003) Biomimetic peptides that engage specific integrin-dependent signaling pathways and bind to calcium phosphate surfaces. J Biomed Mater Res A 67A:69–77.  https://doi.org/10.1002/jbm.a.10053CrossRefGoogle Scholar
  68. 68.
    Gao X et al (2015) Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering. Int J Nanomedicine 10:7109–7128PubMedPubMedCentralGoogle Scholar
  69. 69.
    Ko E, Yang K, Shin J, Cho S-W (2013) Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Biomacromolecules 14:3202–3213.  https://doi.org/10.1021/bm4008343CrossRefGoogle Scholar
  70. 70.
    Pan G et al (2016) Biomimetic design of mussel-derived bioactive peptides for dual-functionalization of titanium-based biomaterials. J Am Chem Soc 138:15078–15086.  https://doi.org/10.1021/jacs.6b09770CrossRefGoogle Scholar
  71. 71.
    Pan H, Zheng Q, Yang S, Guo X (2014) Effects of functionalization of PLGA-[Asp-PEG]n copolymer surfaces with Arg-Gly-Asp peptides, hydroxyapatite nanoparticles, and BMP-2-derived peptides on cell behavior in vitro. J Biomed Mater Res A 102:4526–4535.  https://doi.org/10.1002/jbm.a.35129CrossRefGoogle Scholar
  72. 72.
    Wang M et al (2015) In vitro culture and directed osteogenic differentiation of human pluripotent stem cells on peptides-decorated two-dimensional microenvironment. ACS Appl Mater Interfaces 7:4560–4572.  https://doi.org/10.1021/acsami.5b00188CrossRefGoogle Scholar
  73. 73.
    Lee H, Dellatore SM, Miller WM, Messersmith PB (2007a) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426.  https://doi.org/10.1126/science.1147241CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425.  https://doi.org/10.1016/j.pmatsci.2008.06.004CrossRefGoogle Scholar
  75. 75.
    Tejero R, Anitua E, Orive G (2014) Toward the biomimetic implant surface: biopolymers on titanium-based implants for bone regeneration. Prog Polym Sci 39:1406–1447.  https://doi.org/10.1016/j.progpolymsci.2014.01.001CrossRefGoogle Scholar
  76. 76.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920.  https://doi.org/10.1126/science.8493529CrossRefGoogle Scholar
  77. 77.
    Moeinzadeh S, Jabbari E (2015) Morphogenic peptides in regeneration of load bearing tissues. In: Bertassoni LE, Coelho PG (eds) Engineering mineralized and load bearing tissues. Springer, Cham, pp 95–110.  https://doi.org/10.1007/978-3-319-22345-2_6CrossRefGoogle Scholar
  78. 78.
    Visser R, Rico-Llanos GA, Pulkkinen H, Becerra J (2016) Peptides for bone tissue engineering. J Control Release 244:122–135.  https://doi.org/10.1016/j.jconrel.2016.10.024CrossRefGoogle Scholar
  79. 79.
    Bab I et al (1992) Histone H4-related osteogenic growth peptide (OGP): a novel circulating stimulator of osteoblastic activity. EMBO J 11:1867–1873CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Gabarin N et al (2001) Mitogenic Gi protein-MAP kinase signaling cascade in MC3T3-E1 osteogenic cells: activation by C-terminal pentapeptide of osteogenic growth peptide [OGP(10–14)] and attenuation of activation by cAMP. J Cell Biochem 81:594–603.  https://doi.org/10.1002/jcb.1083CrossRefGoogle Scholar
  81. 81.
    Suzuki Y, Tanihara M, Suzuki K, Saitou A, Sufan W, Nishimura Y (2000) Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. J Biomed Mater Res 50:405–409.  https://doi.org/10.1002/(SICI)1097-4636(20000605)50:3<405::AID-JBM15>3.0.CO;2-ZCrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Saito A, Suzuki Y, Ogata S-i, Ohtsuki C, Tanihara M (2003) Activation of osteo-progenitor cells by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochim Biophys Acta 1651:60–67.  https://doi.org/10.1016/S1570-9639(03)00235-8CrossRefGoogle Scholar
  83. 83.
    Seol Y-J et al (2006) Enhanced osteogenic promotion around dental implants with synthetic binding motif mimicking bone morphogenetic protein (BMP)-2. J Biomed Mater Res A 77A:599–607.  https://doi.org/10.1002/jbm.a.30639CrossRefGoogle Scholar
  84. 84.
    Zouani OF, Chollet C, Guillotin B, Durrieu M-C (2010) Differentiation of pre-osteoblast cells on poly(ethylene terephthalate) grafted with RGD and/or BMPs mimetic peptides. Biomaterials 31:8245–8253.  https://doi.org/10.1016/j.biomaterials.2010.07.042CrossRefGoogle Scholar
  85. 85.
    Kim HK et al (2012) Osteogenesis induced by a bone forming peptide from the prodomain region of BMP-7. Biomaterials 33:7057–7063.  https://doi.org/10.1016/j.biomaterials.2012.06.036CrossRefGoogle Scholar
  86. 86.
    Lee JS, Kim ME, Seon JK, Kang JY, Yoon TR, Park Y-D, Kim HK (2018) Bone-forming peptide-3 induces osteogenic differentiation of bone marrow stromal cells via regulation of the ERK1/2 and Smad1/5/8 pathways. Stem Cell Res 26:28–35.  https://doi.org/10.1016/j.scr.2017.11.016CrossRefGoogle Scholar
  87. 87.
    Choi YJ et al (2010) The identification of a heparin binding domain peptide from bone morphogenetic protein-4 and its role on osteogenesis. Biomaterials 31:7226–7238.  https://doi.org/10.1016/j.biomaterials.2010.05.022CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Bergeron E, Leblanc E, Drevelle O, Giguère R, Beauvais S, Grenier G, Faucheux N (2011) The evaluation of ectopic bone formation induced by delivery systems for bone morphogenetic protein-9 or its derived peptide. Tissue Eng Part A 18:342–352.  https://doi.org/10.1089/ten.tea.2011.0008CrossRefGoogle Scholar
  89. 89.
    Bergeron E, Senta H, Mailloux A, Park H, Lord E, Faucheux N (2009) Murine preosteoblast differentiation induced by a peptide derived from bone morphogenetic Proteins-9. Tissue Eng Part A 15:3341–3349.  https://doi.org/10.1089/ten.tea.2009.0189CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Jung RE, Cochran DL, Domken O, Seibl R, Jones AA, Buser D, Hammerle CHF (2007) The effect of matrix bound parathyroid hormone on bone regeneration. Clin Oral Implants Res 18:319–325.  https://doi.org/10.1111/j.1600-0501.2007.01342.xCrossRefGoogle Scholar
  91. 91.
    Park J-B et al (2007) Osteopromotion with synthetic oligopeptide–coated bovine bone mineral in vivo. J Periodontol 78:157–163.  https://doi.org/10.1902/jop.2007.060200CrossRefGoogle Scholar
  92. 92.
    Lee J-Y et al (2007b) Assembly of collagen-binding peptide with collagen as a bioactive scaffold for osteogenesis in vitro and in vivo. Biomaterials 28:4257–4267.  https://doi.org/10.1016/j.biomaterials.2007.05.040CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Gabet Y et al (2004) Osteogenic growth peptide modulates fracture callus structural and mechanical properties. Bone 35:65–73.  https://doi.org/10.1016/j.bone.2004.03.025CrossRefGoogle Scholar
  94. 94.
    Pigossi SC, Medeiros MC, Saska S, Cirelli JA, Scarel-Caminaga RM (2016) Role of osteogenic growth peptide (OGP) and OGP(10-14) in bone regeneration: a review. Int J Mol Sci 17:1885.  https://doi.org/10.3390/ijms17111885CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Policastro GM, Becker ML (2016) Osteogenic growth peptide and its use as a bio-conjugate in regenerative medicine applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol 8:449–464.  https://doi.org/10.1002/wnan.1376CrossRefGoogle Scholar
  96. 96.
    Moore NM, Lin NJ, Gallant ND, Becker ML (2010) The use of immobilized osteogenic growth peptide on gradient substrates synthesized via click chemistry to enhance MC3T3-E1 osteoblast proliferation. Biomaterials 31:1604–1611.  https://doi.org/10.1016/j.biomaterials.2009.11.011CrossRefGoogle Scholar
  97. 97.
    Horii A, Wang X, Gelain F, Zhang S (2007) Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS One 2:e190.  https://doi.org/10.1371/journal.pone.0000190CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Wozney JM (1989) Bone morphogenetic proteins. Prog Growth Factor Res 1:267–280.  https://doi.org/10.1016/0955-2235(89)90015-XCrossRefGoogle Scholar
  99. 99.
    Saito A, Suzuki Y, Ogata S-I, Ohtsuki C, Tanihara M (2004) Prolonged ectopic calcification induced by BMP-2–derived synthetic peptide. J Biomed Mater Res A 70A:115–121.  https://doi.org/10.1002/jbm.a.30071CrossRefGoogle Scholar
  100. 100.
    Saito A, Suzuki Y, Ogata S-I, Ohtsuki C, Tanihara M (2005) Accelerated bone repair with the use of a synthetic BMP-2-derived peptide and bone-marrow stromal cells. J Biomed Mater Res A 72A:77–82.  https://doi.org/10.1002/jbm.a.30208CrossRefGoogle Scholar
  101. 101.
    Niu X, Feng Q, Wang M, Guo X, Zheng Q (2009) Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. J Control Release 134:111–117.  https://doi.org/10.1016/j.jconrel.2008.11.020CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Moore NM, Lin NJ, Gallant ND, Becker ML (2011) Synergistic enhancement of human bone marrow stromal cell proliferation and osteogenic differentiation on BMP-2-derived and RGD peptide concentration gradients. Acta Biomater 7:2091–2100.  https://doi.org/10.1016/j.actbio.2011.01.019CrossRefGoogle Scholar
  103. 103.
    Bergeron E, Marquis ME, Chrétien I, Faucheux N (2007) Differentiation of preosteoblasts using a delivery system with BMPs and bioactive glass microspheres. J Mater Sci Mater Med 18:255–263.  https://doi.org/10.1007/s10856-006-0687-4CrossRefGoogle Scholar
  104. 104.
    Beauvais S, Drevelle O, Lauzon M-A, Daviau A, Faucheux N (2016) Modulation of MAPK signalling by immobilized adhesive peptides: effect on stem cell response to BMP-9-derived peptides. Acta Biomater 31:241–251.  https://doi.org/10.1016/j.actbio.2015.12.005CrossRefGoogle Scholar
  105. 105.
    Neer RM et al (2001) Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441.  https://doi.org/10.1056/NEJM200105103441904CrossRefGoogle Scholar
  106. 106.
    Arrighi I, Mark S, Alvisi M, von Rechenberg B, Hubbell JA, Schense JC (2009) Bone healing induced by local delivery of an engineered parathyroid hormone prodrug. Biomaterials 30:1763–1771.  https://doi.org/10.1016/j.biomaterials.2008.12.023CrossRefGoogle Scholar
  107. 107.
    Takahata M, Schwarz EM, Chen T, O’Keefe RJ, Awad HA (2012) Delayed short-course treatment with teriparatide (PTH1–34) improves femoral allograft healing by enhancing intramembranous bone formation at the graft–host junction. J Bone Miner Res 27:26–37.  https://doi.org/10.1002/jbmr.518CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Chandra A et al (2014) PTH1–34 alleviates radiotherapy-induced local bone loss by improving osteoblast and osteocyte survival. Bone 67:33–40.  https://doi.org/10.1016/j.bone.2014.06.030CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Dent-Acosta RE, Storm N, Steiner RS, San Martin J (2012) The tactics of modern-day regulatory trials. JBJS 94:39–44.  https://doi.org/10.2106/jbjs.l.00194CrossRefGoogle Scholar
  110. 110.
    Pountos I, Panteli M, Lampropoulos A, Jones E, Calori GM, Giannoudis PV (2016) The role of peptides in bone healing and regeneration: a systematic review. BMC Med 14:103.  https://doi.org/10.1186/s12916-016-0646-yCrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Ryaby JT, Sheller MR, Levine BP, Bramlet DG, Ladd AL, Carney DH (2006) Thrombin peptide TP508 stimulates cellular events leading to angiogenesis, revascularization, and repair of dermal and musculoskeletal tissues. JBJS 88:132–139.  https://doi.org/10.2106/jbjs.f.00892CrossRefGoogle Scholar
  112. 112.
    Aspenberg P et al (2010) Teriparatide for acceleration of fracture repair in humans: a prospective, randomized, double-blind study of 102 postmenopausal women with distal radial fractures. J Bone Miner Res 25:404–414.  https://doi.org/10.1359/jbmr.090731CrossRefGoogle Scholar
  113. 113.
    Aspenberg P, Johansson T (2010) Teriparatide improves early callus formation in distal radial fractures. Acta Orthop 81:234–236.  https://doi.org/10.3109/17453671003761946CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Chintamaneni S, Finzel K, Gruber BL (2010) Successful treatment of sternal fracture nonunion with teriparatide. Osteoporos Int 21:1059–1063.  https://doi.org/10.1007/s00198-009-1061-4CrossRefGoogle Scholar
  115. 115.
    Yu C-T, Chang C-C, Chen C-L, Wei JC-C, Wu J-K (2008) Early callus formation in human hip fracture treated with internal fixation and teriparatide. J Rheumatol 35:2082–2083Google Scholar
  116. 116.
    Arnold PM et al (2016) Efficacy of i-factor bone graft versus autograft in anterior cervical discectomy and fusion: results of the prospective, randomized, single-blinded Food and Drug Administration investigational device exemption study. Spine 41:1075–1083.  https://doi.org/10.1097/brs.0000000000001466CrossRefGoogle Scholar
  117. 117.
    Gomar F, Orozco R, Villar JL, Arrizabalaga F (2007) P-15 small peptide bone graft substitute in the treatment of non-unions and delayed union. A pilot clinical trial. Int Orthop 31:93–99.  https://doi.org/10.1007/s00264-006-0087-xCrossRefGoogle Scholar
  118. 118.
    Yukna RA, Krauser JT, Callan DP, Evans GH, Cruz R, Martin M (2000) Multi-center clinical comparison of combination anorganic bovine-derived hydroxyapatite matrix (ABM)/cell binding peptide (P-15) and ABM in human periodontal osseous defects. 6-month results. J Periodontol 71:1671–1679.  https://doi.org/10.1902/jop.2000.71.11.1671CrossRefGoogle Scholar
  119. 119.
    Bjarnsholt T (2013) The role of bacterial biofilms in chronic infections. APMIS 121:1–58.  https://doi.org/10.1111/apm.12099CrossRefGoogle Scholar
  120. 120.
    Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350:1422–1429.  https://doi.org/10.1056/NEJMra035415CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Sutherland IW (2001) The biofilm matrix—an immobilized but dynamic microbial environment. Trends Microbiol 9:222–227.  https://doi.org/10.1016/S0966-842X(01)02012-1CrossRefGoogle Scholar
  122. 122.
    Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114.  https://doi.org/10.1038/nrd1008CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236:163–173.  https://doi.org/10.1111/j.1574-6968.2004.tb09643.xCrossRefGoogle Scholar
  124. 124.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318.  https://doi.org/10.1126/science.284.5418.1318CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Karygianni L, Al-Ahmad A, Argyropoulou A, Hellwig E, Anderson AC, Skaltsounis AL (2016) Natural antimicrobials and oral microorganisms: a systematic review on herbal interventions for the eradication of multispecies oral biofilms. Front Microbiol 6:1529.  https://doi.org/10.3389/fmicb.2015.01529CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Andrea A, Molchanova N, Jenssen H (2018) Antibiofilm peptides and peptidomimetics with focus on surface immobilization. Biomol Ther 8:27.  https://doi.org/10.3390/biom8020027CrossRefGoogle Scholar
  127. 127.
    Batoni G, Maisetta G, Esin S (2016) Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim Biophys Acta 1858:1044–1060.  https://doi.org/10.1016/j.bbamem.2015.10.013CrossRefGoogle Scholar
  128. 128.
    de la Fuente-Núñez C, Cardoso MH, de Souza Cândido E, Franco OL, Hancock REW (2016) Synthetic antibiofilm peptides. Biochim Biophys Acta 1858:1061–1069.  https://doi.org/10.1016/j.bbamem.2015.12.015CrossRefGoogle Scholar
  129. 129.
    Dostert M, Belanger CR, Hancock REW (2018) Design and assessment of anti-biofilm peptides: steps toward clinical application. J Innate Immun 11:193.  https://doi.org/10.1159/000491497CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Pletzer D, Coleman SR, Hancock REW (2016) Anti-biofilm peptides as a new weapon in antimicrobial warfare. Curr Opin Microbiol 33:35–40.  https://doi.org/10.1016/j.mib.2016.05.016CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Pletzer D, Hancock REW (2016) Antibiofilm peptides: potential as broad-Spectrum agents. J Bacteriol 198:2572.  https://doi.org/10.1128/JB.00017-16CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Strempel N, Strehmel J, Overhage J (2015) Potential application of antimicrobial peptides in the treatment of bacterial biofilm infections. Curr Pharm Des 21:67–84.  https://doi.org/10.2174/1381612820666140905124312CrossRefGoogle Scholar
  133. 133.
    Haney EF, Brito-Sánchez Y, Trimble MJ, Mansour SC, Cherkasov A, Hancock REW (2018) Computer-aided discovery of peptides that specifically attack bacterial biofilms. Sci Rep 8:1871.  https://doi.org/10.1038/s41598-018-19669-4CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    De Brucker K et al (2014) Derivatives of the mouse cathelicidin-related antimicrobial peptide (CRAMP) inhibit fungal and bacterial biofilm formation. Antimicrob Agents Chemother 58:5395.  https://doi.org/10.1128/AAC.03045-14CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    De Zoysa GH, Cameron AJ, Hegde VV, Raghothama S, Sarojini V (2015) Antimicrobial peptides with potential for biofilm eradication: synthesis and structure activity relationship studies of battacin peptides. J Med Chem 58:625–639.  https://doi.org/10.1021/jm501084qCrossRefGoogle Scholar
  136. 136.
    Almaaytah A, Tarazi S, Al-Fandi M, Abuilhaija A, Al-shar’i N, Al-Balas Q, Abu-Awad A (2015) The design and functional characterization of the antimicrobial and antibiofilm activities of BMAP27-melittin, a rationally designed hybrid peptide. Int J Pept Res Ther 21:165–177.  https://doi.org/10.1007/s10989-014-9444-6CrossRefGoogle Scholar
  137. 137.
    Orlando F et al (2008) BMAP-28 improves the efficacy of vancomycin in rat models of gram-positive cocci ureteral stent infection. Peptides 29:1118–1123.  https://doi.org/10.1016/j.peptides.2008.03.005CrossRefGoogle Scholar
  138. 138.
    Mataraci E, Dosler S (2012) In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob Agents Chemother 56:6366.  https://doi.org/10.1128/AAC.01180-12CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Bionda N et al (2016) Identification of novel cyclic lipopeptides from a positional scanning combinatorial library with enhanced antibacterial and antibiofilm activities. Eur J Med Chem 108:354–363.  https://doi.org/10.1016/j.ejmech.2015.11.032CrossRefGoogle Scholar
  140. 140.
    de la Fuente-Núñez C et al (2015) d-Enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol 22:1280–1282.  https://doi.org/10.1016/j.chembiol.2015.09.004CrossRefGoogle Scholar
  141. 141.
    Pletzer D, Wolfmeier H, Bains M, Hancock REW (2017) Synthetic peptides to target stringent response-controlled virulence in a Pseudomonas aeruginosa murine cutaneous infection model. Front Microbiol 8:1867–1867.  https://doi.org/10.3389/fmicb.2017.01867CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Mohamed MF, Brezden A, Mohammad H, Chmielewski J, Seleem MN (2017) A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Sci Rep 7:6953.  https://doi.org/10.1038/s41598-017-07440-0CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Brancatisano FL et al (2014) Inhibitory effect of the human liver-derived antimicrobial peptide hepcidin 20 on biofilms of polysaccharide intercellular adhesin (PIA)-positive and PIA-negative strains of Staphylococcus epidermidis. Biofouling 30:435–446.  https://doi.org/10.1080/08927014.2014.888062CrossRefGoogle Scholar
  144. 144.
    Mansour SC, de la Fuente-Núñez C, Hancock REW (2015) Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. J Pept Sci 21:323–329.  https://doi.org/10.1002/psc.2708CrossRefGoogle Scholar
  145. 145.
    Anunthawan T, de la Fuente-Núñez C, Hancock REW, Klaynongsruang S (2015) Cationic amphipathic peptides KT2 and RT2 are taken up into bacterial cells and kill planktonic and biofilm bacteria. Biochim Biophys Acta 1848:1352–1358.  https://doi.org/10.1016/j.bbamem.2015.02.021CrossRefGoogle Scholar
  146. 146.
    Overhage J, Campisano A, Bains M, Torfs ECW, Rehm BHA, Hancock REW (2008) Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 76:4176–4182.  https://doi.org/10.1128/IAI.00318-08CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Haisma EM et al (2014) LL-37-derived peptides eradicate multidrug-resistant Staphylococcus aureus from thermally wounded human skin equivalents. Antimicrob Agents Chemother 58:4411.  https://doi.org/10.1128/AAC.02554-14CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    de Breij A et al (2018) The antimicrobial peptide SAAP-148 combats drug-resistant bacteria and biofilms. Sci Transl Med 10:eaan4044.  https://doi.org/10.1126/scitranslmed.aan4044CrossRefGoogle Scholar
  149. 149.
    Minardi D et al (2007) The antimicrobial peptide Tachyplesin III coated alone and in combination with intraperitoneal piperacillin-tazobactam prevents ureteral stent Pseudomonas infection in a rat subcutaneous pouch model. Peptides 28:2293–2298.  https://doi.org/10.1016/j.peptides.2007.10.001CrossRefGoogle Scholar
  150. 150.
    Almaaytah A, Qaoud MT, Khalil Mohammed G, Abualhaijaa A, Knappe D, Hoffmann R, Al-Balas Q (2018) Antimicrobial and antibiofilm activity of UP-5, an ultrashort antimicrobial peptide designed using only arginine and biphenylalanine. Pharmaceuticals (Basel, Switzerland) 11(1).  https://doi.org/10.3390/ph11010003CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Ma Z et al (2017) Membrane-active amphipathic peptide WRL3 with in vitro antibiofilm capability and in vivo efficacy in treating methicillin-resistant Staphylococcus aureus burn wound infections. ACS Infect Dis 3:820–832.  https://doi.org/10.1021/acsinfecdis.7b00100CrossRefGoogle Scholar
  152. 152.
    Haney EF, Mansour SC, Hancock REW (2017) Antimicrobial peptides: an introduction. In: Hansen PR (ed) Antimicrobial peptides: methods and protocols. Springer, New York, pp 3–22.  https://doi.org/10.1007/978-1-4939-6737-7_1CrossRefGoogle Scholar
  153. 153.
    Hancock REW, Sahl H-G (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557.  https://doi.org/10.1038/nbt1267CrossRefGoogle Scholar
  154. 154.
    Haney EF, Straus SK, Hancock REW (2019) Reassessing the host defense peptide landscape. Front Chem 7:43.  https://doi.org/10.3389/fchem.2019.00043CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Hilpert K, Volkmer-Engert R, Walter T, Hancock REW (2005) High-throughput generation of small antibacterial peptides with improved activity. Nat Biotechnol 23:1008.  https://doi.org/10.1038/nbt1113CrossRefGoogle Scholar
  156. 156.
    Butts A, Krysan DJ (2012) Antifungal drug discovery: something old and something new. PLoS Pathog 8:e1002870CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Ganz T, Nemeth E (2012) Hepcidin and iron homeostasis. Biochim Biophys Acta 1823:1434–1443.  https://doi.org/10.1016/j.bbamcr.2012.01.014CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Maisetta G, Petruzzelli R, Brancatisano FL, Esin S, Vitali A, Campa M, Batoni G (2010) Antimicrobial activity of human hepcidin 20 and 25 against clinically relevant bacterial strains: effect of copper and acidic pH. Peptides 31:1995–2002.  https://doi.org/10.1016/j.peptides.2010.08.007CrossRefGoogle Scholar
  159. 159.
    Tavanti A, Maisetta G, Del Gaudio G, Petruzzelli R, Sanguinetti M, Batoni G, Senesi S (2011) Fungicidal activity of the human peptide hepcidin 20 alone or in combination with other antifungals against Candida glabrata isolates. Peptides 32:2484–2487.  https://doi.org/10.1016/j.peptides.2011.10.012CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Wieczorek M et al (2010) Structural studies of a peptide with immune modulating and direct antimicrobial activity. Chem Biol 17:970–980.  https://doi.org/10.1016/j.chembiol.2010.07.007CrossRefGoogle Scholar
  161. 161.
    de la Fuente-Núñez C, Reffuveille F, Haney EF, Straus SK, Hancock REW (2014) Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 10:e1004152.  https://doi.org/10.1371/journal.ppat.1004152CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Hamamoto K, Kida Y, Zhang Y, Shimizu T, Kuwano K (2002) Antimicrobial activity and stability to proteolysis of small linear cationic peptides with D-amino acid substitutions. Microbiol Immunol 46:741–749.  https://doi.org/10.1111/j.1348-0421.2002.tb02759.xCrossRefGoogle Scholar
  163. 163.
    Chung EMC, Dean SN, Propst CN, Bishop BM, van Hoek ML (2017) Komodo dragon-inspired synthetic peptide DRGN-1 promotes wound-healing of a mixed-biofilm infected wound NPJ biofilms and microbiomes. NPJ Biofilms Microbiomes 3:9.  https://doi.org/10.1038/s41522-017-0017-2CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Onaizi SA, Leong SSJ (2011) Tethering antimicrobial peptides: current status and potential challenges. Biotechnol Adv 29:67–74.  https://doi.org/10.1016/j.biotechadv.2010.08.012CrossRefGoogle Scholar
  165. 165.
    Forbes S, McBain AJ, Felton-Smith S, Jowitt TA, Birchenough HL, Dobson CB (2013) Comparative surface antimicrobial properties of synthetic biocides and novel human apolipoprotein E derived antimicrobial peptides. Biomaterials 34:5453–5464.  https://doi.org/10.1016/j.biomaterials.2013.03.087CrossRefGoogle Scholar
  166. 166.
    Etienne O et al (2004) Multilayer polyelectrolyte films functionalized by insertion of Defensin: a new approach to protection of implants from bacterial colonization. Antimicrob Agents Chemother 48:3662.  https://doi.org/10.1128/AAC.48.10.3662-3669.2004CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Shukla A, Fleming KE, Chuang HF, Chau TM, Loose CR, Stephanopoulos GN, Hammond PT (2010) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31:2348–2357.  https://doi.org/10.1016/j.biomaterials.2009.11.082CrossRefGoogle Scholar
  168. 168.
    Gao G, Cheng John TJ, Kindrachuk J, Hancock Robert EW, Straus Suzana K, Kizhakkedathu Jayachandran N (2012) Biomembrane interactions reveal the mechanism of action of surface-immobilized host defense IDR-1010 peptide. Chem Biol 19:199–209.  https://doi.org/10.1016/j.chembiol.2011.12.015CrossRefGoogle Scholar
  169. 169.
    Gao G et al (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32:3899–3909.  https://doi.org/10.1016/j.biomaterials.2011.02.013CrossRefGoogle Scholar
  170. 170.
    Lim K et al (2013) Immobilization studies of an engineered arginine–tryptophan-rich peptide on a silicone surface with antimicrobial and antibiofilm activity. ACS Appl Mater Interfaces 5:6412–6422.  https://doi.org/10.1021/am401629pCrossRefGoogle Scholar
  171. 171.
    Kazemzadeh-Narbat M, Kindrachuk J, Duan K, Jenssen H, Hancock REW, Wang R (2010) Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials 31:9519–9526.  https://doi.org/10.1016/j.biomaterials.2010.08.035CrossRefGoogle Scholar
  172. 172.
    Kazemzadeh-Narbat M, Noordin S, Masri BA, Garbuz DS, Duncan CP, Hancock REW, Wang R (2012) Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium. J Biomed Mater Res B Appl Biomater 100B:1344–1352.  https://doi.org/10.1002/jbm.b.32701CrossRefGoogle Scholar
  173. 173.
    Kazemzadeh-Narbat M, Lai BFL, Ding C, Kizhakkedathu JN, Hancock REW, Wang R (2013) Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 34:5969–5977.  https://doi.org/10.1016/j.biomaterials.2013.04.036CrossRefGoogle Scholar
  174. 174.
    Fox JL (2013) Antimicrobial peptides stage a comeback. Nat Biotechnol 31:379.  https://doi.org/10.1038/nbt.2572CrossRefGoogle Scholar
  175. 175.
    Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194–194.  https://doi.org/10.3389/fcimb.2016.00194CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Grönberg A, Mahlapuu M, Ståhle M, Whately-Smith C, Rollman O (2014) Treatment with LL-37 is safe and effective in enhancing healing of hard-to-heal venous leg ulcers: a randomized, placebo-controlled clinical trial. Wound Repair Regen 22:613–621.  https://doi.org/10.1111/wrr.12211CrossRefGoogle Scholar
  177. 177.
    Falagas ME, Kasiakou SK, Saravolatz LD (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40:1333–1341.  https://doi.org/10.1086/429323CrossRefGoogle Scholar
  178. 178.
    Landman D, Georgescu C, Martin DA, Quale J (2008) Polymyxins revisited. Clin Microbiol Rev 21:449.  https://doi.org/10.1128/CMR.00006-08CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Zavascki AP, Goldani LZ, Li J, Nation RL (2007) Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother 60:1206–1215.  https://doi.org/10.1093/jac/dkm357CrossRefGoogle Scholar
  180. 180.
    Rotem S, Mor A (2009) Antimicrobial peptide mimics for improved therapeutic properties. Biochim Biophys Acta 1788:1582–1592.  https://doi.org/10.1016/j.bbamem.2008.10.020CrossRefGoogle Scholar
  181. 181.
    Piluso S, Soultan AH, Patterson J (2017) Molecularly engineered polymer-based Systems in drug delivery and regenerative medicine. Curr Pharm Des 23:281–294.  https://doi.org/10.2174/1381612822666161021104239CrossRefGoogle Scholar
  182. 182.
    Moreira Teixeira LS, Patterson J, Luyten FP (2014) Skeletal tissue regeneration: where can hydrogels play a role? Int Orthop 38:1861–1876.  https://doi.org/10.1007/s00264-014-2402-2CrossRefGoogle Scholar
  183. 183.
    Van den Broeck L, Piluso S, Soultan AH, De Volder M, Patterson J (2019) Cytocompatible carbon nanotube reinforced polyethylene glycol composite hydrogels for tissue engineering. Mater Sci Eng C Mater Biol Appl 98:1133–1144.  https://doi.org/10.1016/j.msec.2019.01.020CrossRefGoogle Scholar
  184. 184.
    Romanò CL, Toscano M, Romanò D, Drago L (2013) Antibiofilm agents and implant-related infections in orthopaedics: where are we? J Chemother 25:67–80.  https://doi.org/10.1179/1973947812Y.0000000045CrossRefGoogle Scholar
  185. 185.
    Lu H, Liu Y, Guo J, Wu H, Wang J, Wu G (2016) Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects. Int J Mol Sci 17:334–334.  https://doi.org/10.3390/ijms17030334CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Independent ConsultantLeuvenBelgium
  2. 2.Department of Imaging and Pathology, KU LeuvenLeuvenBelgium

Personalised recommendations