Advertisement

Cationic Antimicrobial Coatings with Osteoinductive Properties

  • Qing Song
  • Yangyang Pei
  • Xiaoting Ye
  • Peng LiEmail author
  • Wei Huang
Chapter
  • 132 Downloads

Abstract

Orthopedic implant-associated infections caused by pathogenic bacteria, especially the Staphylococcus genus, have been a medical and surgical challenge. The infections not only delay the healing process, and have patients suffer from severe pain and even be subjected to re-implantation, but also cause enormous economic losses. It is clear that both a reduction of bacterial infections and acceleration of bone healing are critical to improving the osseointegration of orthopedic implants. Recently, various antibacterial coatings have been employed for the surface modification of orthopedic implants to reduce the bacterial infections. Interestingly, it has been found that some antibacterial coatings, including polycations and metal cations, also possess osteoinductive properties, and thus effectively speed up the healing process. In this chapter, we will shed light on the antibacterial and osteogenic mechanisms of positively charged biomaterials and present some typical cationic antimicrobial coatings with osteoinductive properties in detail.

Keywords

Polycations Copper Antibacterial Osteoinductive Angiogenesis 

Notes

Acknowledgments

This work was financially supported by the National Key R&D Program of China (2018YFC1105402 and 2017YFA0207202), the National Natural Science Foundation of China (21706222 and 21875189), Key R&D Program of Jiangsu Province (BE2017740), the open research fund of Key Laboratory for Organic Electronics and Information Displays, and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Lobb DC, DeGeorge BR, Chhabra AB (2019) Bone graft substitutes: current concepts and future expectations. J Hand Surg Am 44(6):497-505.e2CrossRefGoogle Scholar
  2. 2.
    Lu H, Liu Y, Guo J, Wu H, Wang J, Wu G (2016) Biomaterials with antibacterial and osteoinductive properties to repair infected bone defects. Int J Mol Sci 17(3):334CrossRefGoogle Scholar
  3. 3.
    Campoccia D, Montanaro L, Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27(11):2331–2339CrossRefGoogle Scholar
  4. 4.
    Poortinga AT, Bos R, Norde W, Busscher HJ (2002) Electric double layer interactions in bacterial adhesion to surfaces. Surf Sci Rep 47(1):1–32CrossRefGoogle Scholar
  5. 5.
    Ding X, Duan S, Ding X, Liu R, Xu F-J (2018) Versatile antibacterial materials: an emerging arsenal for combatting bacterial pathogens. Adv Funct Mater 28(40):1802140CrossRefGoogle Scholar
  6. 6.
    Croes M, Bakhshandeh S, van Hengel IAJ, Lietaert K, van Kessel KPM, Pouran B, van der Wal BCH, Vogely HC, Van Hecke W, Fluit AC, Boel CHE, Alblas J, Zadpoor AA, Weinans H, Amin Yavari S (2018) Antibacterial and immunogenic behavior of silver coatings on additively manufactured porous titanium. Acta Biomater 81:315–327CrossRefGoogle Scholar
  7. 7.
    Heidenau F, Mittelmeier W, Detsch R, Haenle M, Stenzel F, Ziegler G, Gollwitzer H (2005) A novel antibacterial titania coating: metal ion toxicity and in vitro surface colonization. J Mater Sci Mater Med 16(10):883–888CrossRefGoogle Scholar
  8. 8.
    Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77(5):1541–1547CrossRefGoogle Scholar
  9. 9.
    Miron RJ, Zhang YF (2012) Osteoinduction: a review of old concepts with new standards. J Dent Res 91(8):736–744CrossRefGoogle Scholar
  10. 10.
    Hu L, Yin C, Zhao F, Ali A, Ma J, Qian A (2018) Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int J Mol Sci 19(2):360CrossRefGoogle Scholar
  11. 11.
    Long F (2012) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13(1):27–38CrossRefGoogle Scholar
  12. 12.
    Krishnan V, Dhurjati R, Vogler EA, Mastro AM (2010) Osteogenesis in vitro: from pre-osteoblasts to osteocytes. In Vitro Cell Dev Biol-Animal 46(1):28–35CrossRefGoogle Scholar
  13. 13.
    Shahi M, Peymani A, Sahmani M (2017) Regulation of bone metabolism. Rep Biochem Mol Biol 5(2):73-82PubMedPubMedCentralGoogle Scholar
  14. 14.
    Marie PJ, Haÿ E, Saidak Z (2014) Integrin and cadherin signaling in bone: role and potential therapeutic targets. Trends Endocrinol Metab 25(11):567–575CrossRefGoogle Scholar
  15. 15.
    Götz W, Reichert C, Canullo L, Jäger A, Heinemann F (2012) Coupling of osteogenesis and angiogenesis in bone substitute healing—a brief overview. Ann Anat 194(2):171–173CrossRefGoogle Scholar
  16. 16.
    Grosso A, Burger MG, Lunger A, Schaefer DJ, Banfi A, Maggio ND (2017) It takes two to tango: coupling of angiogenesis and osteogenesis for bone regeneration. Front Bioeng Biotechnol 5:68CrossRefGoogle Scholar
  17. 17.
    Shi L, Zhang W, Yang K, Shi H, Li D, Liu J, Ji J, Chu PK (2015) Antibacterial and osteoinductive capability of orthopedic materials via cation–π interaction mediated positive charge. J Mater Chem B 3(5):733–737CrossRefGoogle Scholar
  18. 18.
    Schaer TP, Stewart S, Hsu BB, Klibanov AM (2012) Hydrophobic polycationic coatings that inhibit biofilms and support bone healing during infection. Biomaterials 33(5):1245–1254CrossRefGoogle Scholar
  19. 19.
    Makihira S, Shuto T, Nikawa H, Okamoto K, Mine Y, Takamoto Y, Ohara M, Tsuji K (2010) Titanium immobilized with an antimicrobial peptide derived from histatin accelerates the differentiation of osteoblastic cell line, MC3T3-E1. Int J Mol Sci 11(4):1458–1470CrossRefGoogle Scholar
  20. 20.
    Tripathi JK, Pal S, Awasthi B, Kumar A, Tandon A, Mitra K, Chattopadhyay N, Ghosh JK (2015) Variants of self-assembling peptide, KLD-12 that show both rapid fracture healing and antimicrobial properties. Biomaterials 56:92–103CrossRefGoogle Scholar
  21. 21.
    Lee PH, Chen MY, Lai YL, Lee SY, Chen HL (2018) Human beta-defensin-2 and -3 mitigate the negative effects of bacterial contamination on bone healing in rat calvarial defect. Tissue Eng A 24(7–8):653–661CrossRefGoogle Scholar
  22. 22.
    Choe H, Narayanan AS, Gandhi DA, Weinberg A, Marcus RE, Lee Z, Bonomo RA, Greenfield EM (2015) Immunomodulatory peptide IDR-1018 decreases implant infection and preserves osseointegration. Clin Orthop Relat Res 473(9):2898–2907CrossRefGoogle Scholar
  23. 23.
    Keselowsky BG, Collard DM, García AJ (2005) Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc Natl Acad Sci U S A 102(17):5953–5957CrossRefGoogle Scholar
  24. 24.
    Sabanai K, Tsutsui M, Sakai A, Hirasawa H, Tanaka S, Nakamura E, Tanimoto A, Sasaguri Y, Ito M, Shimokawa H, Nakamura T, Yanagihara N (2008) Genetic disruption of all NO synthase isoforms enhances BMD and bone turnover in mice in vivo: involvement of the renin-angiotensin system. J Bone Miner Res 23(5):633–643CrossRefGoogle Scholar
  25. 25.
    Zhang W, Liu J, Shi H, Yang K, Wang P, Wang G, Liu N, Wang H, Ji J, Chu PK (2016) Communication between nitric oxide synthase and positively-charged surface and bone formation promotion. Colloids Surf B: Biointerfaces 148:354–362CrossRefGoogle Scholar
  26. 26.
    Josse J, Velard F, Gangloff SC (2015) Staphylococcus aureus vs. osteoblast: relationship and consequences in osteomyelitis. Front Cell Infect Microbiol 5:85CrossRefGoogle Scholar
  27. 27.
    Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y (2013) Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34(2):422–433CrossRefGoogle Scholar
  28. 28.
    Burghardt I, Lüthen F, Prinz C, Kreikemeyer B, Zietz C, Neumann H-G, Rychly J (2015) A dual function of copper in designing regenerative implants. Biomaterials 44:36–44CrossRefGoogle Scholar
  29. 29.
    Wu Q, Li J, Zhang W, Qian H, She W, Pan H, Wen J, Zhang X, Liu X, Jiang X (2014) Antibacterial property, angiogenic and osteogenic activity of Cu-incorporated TiO2 coating. J Mater Chem B 2(39):6738–6748CrossRefGoogle Scholar
  30. 30.
    Prinz C, Elhensheri M, Rychly J, Neumann H-G (2017) Antimicrobial and bone-forming activity of a copper coated implant in a rabbit model. J Biomater Appl 32(2):139–149CrossRefGoogle Scholar
  31. 31.
    Ren L, Wong HM, Yan CH, Yeung KW, Yang K (2015) Osteogenic ability of Cu-bearing stainless steel. J Biomed Mater Res Part B Appl Biomater 103(7):1433–1444CrossRefGoogle Scholar
  32. 32.
    Ren L, Yang K, Guo L, Chai H-w (2012) Preliminary study of anti-infective function of a copper-bearing stainless steel. Mater Sci Eng C 32(5):1204–1209CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Qing Song
    • 1
    • 2
  • Yangyang Pei
    • 1
  • Xiaoting Ye
    • 1
  • Peng Li
    • 1
    • 3
    Email author
  • Wei Huang
    • 1
    • 2
    • 3
  1. 1.MIIT Key Laboratory of Flexible Electronics & Shaanxi Key Laboratory of Flexible Electronics, Xi’an Key Laboratory of Flexible Electronics & Xi’an Key Laboratory of Biomedical Materials and Engineering, Xi’an Institute of Flexible Electronics (IFE) & Xi’an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU)Xi’anChina
  2. 2.Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM)Nanjing University of Posts & TelecommunicationsNanjingChina
  3. 3.Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech UniversityNanjingChina

Personalised recommendations