Advertisement

Three-Dimensional (3D) and Drug-Eluting Nanofiber Coating for Prosthetic Implants

  • Liang Chen
  • Weiping RenEmail author
Chapter
  • 115 Downloads

Abstract

Failure of osseointegration and implant infection are the two main causes of implant failure and loosening. There is an urgent need for orthopedic implants that promote rapid osseointegration and prevent infection, particularly when placed in bone compromised by disease or physiology of the patients. This chapter reviews current and potential future use of biologic and drug-eluting coatings for orthopedic implants to facilitate osseointegration and prevent implant infection. The potential application of porous and drug-eluting coaxial nanofiber as a means of alternative implant surface coating was discussed.

Keywords

Osseointegration Infection Periprosthetic implant Implant coating Three-dimensional (3D) nanofibers Automatic electrospun nanofibers collector Cellular activity Electrospinning Corona discharge Porous structure Coaxial Drug delivery 

Abbreviations

AL

Aseptic loosening

AMP

Antimicrobial peptides

CS

Chondroitin sulfate

DAC

Defensive antibacterial coating

Doxy

Doxycycline

ECM

Extracellular matrices

HA

Hydroxyapatite

LBL

Layer-by-layer

MSCs

Mesenchymal stem cells

NFs

Nanofibers

PAA

Poly(acrylic acid)

PCL

Polycaprolactone

PEO

Poly(ethylene oxide)

PJI

Prosthetic joint infection

PLGA

Poly(lactic-co-glycolic acid)

PVP

Polyvinyl pyrrolidone

rhBMP-2

Recombinant human bone morphogenetic protein-2

rhBMP-4

Recombinant human bone morphogenetic protein-4

THA

Total hip arthroplasties

Ti

Titanium

TiColl

Type-I collagen-coated titanium

TJA

Total joint arthroplasty

TKA

Total knee arthroplasties

VEGF165

Recombinant human vascular endothelial growth factor

β-TCP

β-tricalcium

References

  1. 1.
    Centers for Disease Control and Prevention (2013) National hospital discharge survey: 2010 table, procedures by selected patient characteristics. Centers for Disease Control and Prevention, AtlantaGoogle Scholar
  2. 2.
    Tande AJ, Patel R (2014) Prosthetic joint infection. Clin Microbiol Rev 27(2):302–345CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kurtz S et al (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am 89(4):780–785CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Sharkey PF et al (2002) Insall Award paper. Why are total knee arthroplasties failing today? Clin Orthop Relat Res (404):7–13Google Scholar
  5. 5.
    Colizza WA, Insall JN, Scuderi GR (1995) The posterior stabilized total knee prosthesis. Assessment of polyethylene damage and osteolysis after a ten-year-minimum follow-up. J Bone Joint Surg Am 77(11):1713–1720CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Emmerson KP, Moran CG, Pinder IM (1996) Survivorship analysis of the Kinematic Stabilizer total knee replacement: a 10- to 14-year follow-up. J Bone Joint Surg Br 78(3):441–445CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ranawat CS, Luessenhop CP, Rodriguez JA (1997) The press-fit condylar modular total knee system. Four-to-six-year results with a posterior-cruciate-substituting design. J Bone Joint Surg Am 79(3):342–348CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Font-Rodriguez DE, Scuderi GR, Insall JN (1997) Survivorship of cemented total knee arthroplasty. Clin Orthop Relat Res (345):79–86Google Scholar
  9. 9.
    Weir DJ, Moran CG, Pinder IM (1996) Kinematic condylar total knee arthroplasty. 14-year survivorship analysis of 208 consecutive cases. J Bone Joint Surg Br 78(6):907–911CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Goriainov V et al (2014) Bone and metal: an orthopaedic perspective on osseointegration of metals. Acta Biomater 10(10):4043–4057CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Heck DA et al (1998) Revision rates after knee replacement in the United States. Med Care 36(5):661–669CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Baroli B (2009) From natural bone grafts to tissue engineering therapeutics: brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci 98(4):1317–1375CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Davies JE (2003) Understanding peri-implant endosseous healing. J Dent Educ 67(8):932–949Google Scholar
  14. 14.
    Raphel J et al (2016) Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials 84:301–314CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C (2006) Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop 77(2):177–197CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Amstutz HC et al (1992) Mechanism and clinical significance of wear debris-induced osteolysis. Clin Orthop Relat Res (276):7–18Google Scholar
  17. 17.
    Sadoghi P, Liebensteiner M, Agreiter M, Leithner A, Böhler N, Labek G (2013) Revision surgery after total joint arthroplasty: a complication-based analysis using worldwide arthroplasty registers. J Arthroplast 28(8):1329–1332CrossRefGoogle Scholar
  18. 18.
    Brånemark R et al (2001) Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev 38(2):175–181Google Scholar
  19. 19.
    Ryd L (1992) Roentgen stereophotogrammetric analysis of prosthetic fixation in the hip and knee joint. Clin Orthop Relat Res (276):56–65Google Scholar
  20. 20.
    Kärrholm J, Borssén B, Löwenhielm G, Snorrason F (1994) Does early micromotion of femoral stem prostheses matter? 4-7-year stereoradiographic follow-up of 84 cemented prostheses. J Bone Joint Surg Br 76(6):912–917CrossRefGoogle Scholar
  21. 21.
    Kurtz SM et al (2010) Prosthetic joint infection risk after TKA in the Medicare population. Clin Orthop Relat Res 468(1):52–56CrossRefGoogle Scholar
  22. 22.
    Kurtz SM et al (2012) Economic burden of periprosthetic joint infection in the United States. J Arthroplasty 27(8 Suppl):61–5.e1CrossRefGoogle Scholar
  23. 23.
    Pulido L et al (2008) Periprosthetic joint infection: the incidence, timing, and predisposing factors. Clin Orthop Relat Res 466(7):1710–1715CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ratto N, Arrigoni C, Rosso F, Bruzzone M, Dettoni F, Bonasia DE, Rossi R (2016) Total knee arthroplasty and infection: how surgeons can reduce the risks. EFORT Open Rev 1(9):339–344CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wisplinghoff H et al (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39(3):309–317CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Friedman ND et al (2002) Health care—associated bloodstream infections in adults: a reason to change the accepted definition of community-acquired infections. Ann Intern Med 137(10):791–797CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Uckay I et al (2009) Low incidence of haematogenous seeding to total hip and knee prostheses in patients with remote infections. J Infect 59(5):337–345CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Molina-Manso D et al (2013) In vitro susceptibility to antibiotics of staphylococci in biofilms isolated from orthopaedic infections. Int J Antimicrob Agents 41(6):521–523CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    del Pozo JL, Patel R (2007) The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 82(2):204–209CrossRefGoogle Scholar
  31. 31.
    Simchi A et al (2011) Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications. Nanomedicine 7(1):22–39CrossRefGoogle Scholar
  32. 32.
    Niinomi M (2008) Metallic biomaterials. J Artif Organs 11(3):105–110CrossRefGoogle Scholar
  33. 33.
    Rahbek O et al (2001) Sealing effect of hydroxyapatite coating on peri-implant migration of particles. An experimental study in dogs. J Bone Joint Surg Br 83(3):441–447CrossRefGoogle Scholar
  34. 34.
    Geesink RG (2002) Osteoconductive coatings for total joint arthroplasty. Clin Orthop Relat Res 395:53–65CrossRefGoogle Scholar
  35. 35.
    Soballe K (1993) Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs. Acta Orthop Scand Suppl 255:1–58CrossRefGoogle Scholar
  36. 36.
    Bauer TW (1995) Hydroxyapatite: coating controversies. Orthopedics 18(9):885–888PubMedGoogle Scholar
  37. 37.
    Bloebaum RD et al (1994) Complications with hydroxyapatite particulate separation in total hip arthroplasty. Clin Orthop Relat Res (298):19–26Google Scholar
  38. 38.
    Goosen JH, Kums AJ, Kollen BJ, Verheyen CC (2008) Porous-coated femoral components with or without hydroxyapatite in primary uncemented total hip arthroplasty: a systematic review of randomized controlled trials. Arch Orthop Trauma Surg 129(9):1165–1169CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Song Y, Zhang S, Li J, Zhao C, Zhang X (2010) Electrodeposition of Ca-P coatings on biodegradable Mg alloy: in vitro biomineralization behavior. Acta Biomater 6(5):1736–1742CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    de Jonge LT et al (2008) Organic-inorganic surface modifications for titanium implant surfaces. Pharm Res 25(10):2357–2369CrossRefGoogle Scholar
  41. 41.
    He J et al (2012) Collagen-infiltrated porous hydroxyapatite coating and its osteogenic properties: in vitro and in vivo study. J Biomed Mater Res A 100(7):1706–1715CrossRefGoogle Scholar
  42. 42.
    Choi S, Murphy WL (2010) Sustained plasmid DNA release from dissolving mineral coatings. Acta Biomater 6(9):3426–3435CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Saran N, Zhang R, Turcotte RE (2011) Osteogenic protein-1 delivered by hydroxyapatite-coated implants improves bone ingrowth in extracortical bone bridging. Clin Orthop Relat Res 469(5):1470–1478CrossRefGoogle Scholar
  44. 44.
    Shah NJ et al (2012) Osteophilic multilayer coatings for accelerated bone tissue growth. Adv Mater 24(11):1445–1450CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98CrossRefGoogle Scholar
  46. 46.
    Fielding GA et al (2012) Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater 8(8):3144–3152CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Chen W et al (2006) In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27(32):5512–5517CrossRefGoogle Scholar
  48. 48.
    Pan CJ et al (2011) Enhancing the antibacterial activity of biomimetic HA coatings by incorporation of norvancomycin. J Orthop Sci 16(1):105–113CrossRefGoogle Scholar
  49. 49.
    Kazemzadeh-Narbat M et al (2012) Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium. J Biomed Mater Res B Appl Biomater 100(5):1344–1352CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Cao H et al (2011) Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects. Biomaterials 32(3):693–705CrossRefGoogle Scholar
  51. 51.
    Huo K et al (2013) Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials 34(13):3467–3478CrossRefGoogle Scholar
  52. 52.
    Svensson S et al (2013) Osseointegration of titanium with an antimicrobial nanostructured noble metal coating. Nanomedicine 9(7):1048–1056CrossRefGoogle Scholar
  53. 53.
    Neut D et al (2015) A biodegradable gentamicin-hydroxyapatite-coating for infection prophylaxis in cementless hip prostheses. Eur Cell Mater 29:42–56CrossRefGoogle Scholar
  54. 54.
    Stigter M, de Groot K, Layrolle P (2002) Incorporation of tobramycin into biomimetic hydroxyapatite coating on titanium. Biomaterials 23(20):4143–4153CrossRefGoogle Scholar
  55. 55.
    Stigter M, Bezemer J, de Groot K, Layrolle P (2004) Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Control Release 99(1):127–137CrossRefGoogle Scholar
  56. 56.
    Renwen Zhang DX, Tracy L, Carol T (2004) Ectopic bone formation using osteogenic protein-1 carried by a solution precipitated hydroxyapatite. J Biomed Mater Res 71A(3):412–418CrossRefGoogle Scholar
  57. 57.
    Yamamura K, Iwata H, Yotsuyanagi T (1992) Synthesis of antibiotic-loaded hydroxyapatite beads and in vitro drug release testing. J Biomed Mater Res 26(8):1053–1064CrossRefGoogle Scholar
  58. 58.
    Goodman SB et al (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34(13):3174–3183CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Rammelt S et al (2004) Coating of titanium implants with type-I collagen. J Orthop Res 22(5):1025–1034CrossRefGoogle Scholar
  60. 60.
    Sartori M et al (2015) Collagen type I coating stimulates bone regeneration and osteointegration of titanium implants in the osteopenic rat. Int Orthop 39(10):2041–2052CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Stadlinger B et al (2008) Evaluation of osseointegration of dental implants coated with collagen, chondroitin sulphate and BMP-4: an animal study. Int J Oral Maxillofac Surg 37(1):54–59CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Dupont KM et al (2012) Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair. Cell Tissue Res 347(3):575–588CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ordikhani F, Tamjid E, Simchi A (2014) Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant-associated infections. Mater Sci Eng C Mater Biol Appl 41:240–248CrossRefGoogle Scholar
  64. 64.
    de la Torre PM, Enobakhare Y, Torrado G, Torrado S (2003) Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid). Study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials 24(8):1499–1506CrossRefGoogle Scholar
  65. 65.
    Risbud MV, Hardikar AA, Bhat SV, Bhonde RR (2000) pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J Control Release 68(1):23–30CrossRefGoogle Scholar
  66. 66.
    Romanò CL, Malizos K, Capuano N, Mezzoprete R, D’Arienzo M, Van Der Straeten C, Scarponi S, Drago L (2016) Does an antibiotic-loaded hydrogel coating reduce early post-surgical infection after joint arthroplasty? J Bone Jt Infect 1:34–41CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Shah NJ et al (2011) Tunable dual growth factor delivery from polyelectrolyte multilayer films. Biomaterials 32(26):6183–6193CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Macdonald ML et al (2011) Tissue integration of growth factor-eluting layer-by-layer polyelectrolyte multilayer coated implants. Biomaterials 32(5):1446–1453CrossRefGoogle Scholar
  69. 69.
    Malcher M et al (2008) Embedded silver ions-containing liposomes in polyelectrolyte multilayers: cargos films for antibacterial agents. Langmuir 24(18):10209–10215CrossRefGoogle Scholar
  70. 70.
    Moskowitz JS et al (2010) The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model. Biomaterials 31(23):6019–6030CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Shukla A et al (2010) Tunable vancomycin releasing surfaces for biomedical applications. Small 6(21):2392–2404CrossRefGoogle Scholar
  72. 72.
    Wojtowicz AM et al (2010) Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair. Biomaterials 31(9):2574–2582CrossRefGoogle Scholar
  73. 73.
    Petrie TA et al (2010) Multivalent integrin-specific ligands enhance tissue healing and biomaterial integration. Sci Transl Med 2(45):45–60CrossRefGoogle Scholar
  74. 74.
    Auernheimer J et al (2005) Titanium implant materials with improved biocompatibility through coating with phosphonate-anchored cyclic RGD peptides. Chembiochem 6(11):2034–2040CrossRefGoogle Scholar
  75. 75.
    Antoci V Jr et al (2007) Covalently attached vancomycin provides a nanoscale antibacterial surface. Clin Orthop Relat Res 461:81–87PubMedPubMedCentralGoogle Scholar
  76. 76.
    Antoci V Jr et al (2008) The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials 29(35):4684–4690CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Hickok NJ, Shapiro IM (2012) Immobilized antibiotics to prevent orthopaedic implant infections. Adv Drug Deliv Rev 64(12):1165–1176CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Engh CA, Bobyn JD, Glassman AH (1987) Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg Br 69(1):45–55CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Black J (1994) Biological performance of tantalum. Clin Mater 16(3):167–173CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Kawamura H et al (2001) The porous coated anatomic total hip replacement. A ten to fourteen-year follow-up study of a cementless total hip arthroplasty. J Bone Joint Surg Am 83-A(9):1333–1338CrossRefGoogle Scholar
  81. 81.
    Harrison N et al (2013) Micromotion and friction evaluation of a novel surface architecture for improved primary fixation of cementless orthopaedic implants. J Mech Behav Biomed Mater 21:37–46CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Shah NJ, Hong J, Hyder MN, Hammond PT (2012) Promoting bone mesenchymal stem cells and inhibiting bacterial adhesion of acid-etched nanostructured titanium by ultraviolet functionalization. Adv Mater 24:1445–1450CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237(4822):1588–1595CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Fratzl P, Groschner M, Vogl G, Plenk H Jr, Eschberger J, Fratzl-Zelman N, Koller K, Klaushofer K (1992) Mineral crystals in calcified tissues: a comparative study by SAXS. J Bone Miner Res 7(3):329–334CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Zhang R, Ma PX (2000) Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res 52(2):430–438CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(3):613–621CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    White CA, Carsen S, Rasuli K, Feibel RJ, Kim PR, Beaulé PE (2012) High incidence of migration with poor initial fixation of the Accolade stem. Clin Orthop Relat Res 470(2):410–417CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Baker BM, Gee AO, Metter RB, Nathan AS, Marklein RA, Burdick JA, Mauck RL (2008) The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29(15):2348–2358CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Song W et al (2013) Coaxial PCL/PVA electrospun nanofibers: osseointegration enhancer and controlled drug release device. Biofabrication 5(3):035006CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Katti DS et al (2004) Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res B Appl Biomater 70(2):286–296CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7:216–223CrossRefGoogle Scholar
  92. 92.
    Kohgo T et al (2011) Bone regeneration with self-assembling peptide nanofiber scaffolds in tissue engineering for osseointegration of dental implants. Int J Periodontics Restorative Dent 31(4):e9–e16PubMedPubMedCentralGoogle Scholar
  93. 93.
    Huang Z et al (2008) Effect of nanofiber-coated surfaces on the proliferation and differentiation of osteoprogenitors in vitro. Tissue Eng Part A 14(11):1853–1859CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Rampichová M, Chvojka J, Buzgo M, Prosecká E, Mikeš P, Vysloužilová L, Tvrdík D, Kochová P, Gregor T, Lukáš D, Amler E (2013) Elastic three-dimensional poly (ε-caprolactone) nanofibre scaffold enhances migration, proliferation and osteogenic differentiation of mesenchymal stem cells. Cell Prolif 46(1):23–37CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Lowery JL, Datta N, Rutledge GC (2010) Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(epsilon-caprolactone) fibrous mats. Biomaterials 31(3):491–504CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Blakeney BA, Tambralli A, Anderson JM, Andukuri A, Lim DJ, Dean DR, Jun W (2011) Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials 32(6):1583–1590CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Nam J et al (2007) Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng 13(9):2249–2257CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Holzwarth JM, Ma PX (2011) Biomimetic nanofibrous scaffolds for bone tissue engineering. Biomaterials 32(36):9622–9629CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Pham QP, Sharma U, Mikos AG (2006) Electrospun poly(epsilon-caprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 7(10):2796–2805CrossRefGoogle Scholar
  101. 101.
    Levorson EJ et al (2013) Fabrication and characterization of multiscale electrospun scaffolds for cartilage regeneration. Biomed Mater 8(1):014103CrossRefGoogle Scholar
  102. 102.
    Teo WE, Inai R, Ramakrishna S (2011) Technological advances in electrospinning of nanofibers. Sci Technol Adv Mater 12(1):013002CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Wu J, Hong Y (2016) Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioact Mater 1(1):56–64CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Leong MF et al (2009) In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique. J Biomed Mater Res A 91(1):231–240CrossRefGoogle Scholar
  105. 105.
    Leong MF et al (2010) Fabrication and in vitro and in vivo cell infiltration study of a bilayered cryogenic electrospun poly(D,L-lactide) scaffold. J Biomed Mater Res A 94(4):1141–1149PubMedGoogle Scholar
  106. 106.
    Baker BM et al (2008) The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29(15):2348–2358CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Thorvaldsson A et al (2008) Electrospinning of highly porous scaffolds for cartilage regeneration. Biomacromolecules 9(3):1044–1049CrossRefGoogle Scholar
  108. 108.
    Ki CS et al (2008) Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration. Biotechnol Lett 30(3):405–410CrossRefGoogle Scholar
  109. 109.
    Yang W et al (2013) In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers. Acta Biomater 9(1):4505–4512CrossRefGoogle Scholar
  110. 110.
    Smit E, Bűttner U, Sanderson RD (2005) Continuous yarns from electrospun fibers. Polymer 46(8):2419–2423CrossRefGoogle Scholar
  111. 111.
    Wu J et al (2014) Cell infiltration and vascularization in porous nanoyarn scaffolds prepared by dynamic liquid electrospinning. J Biomed Nanotechnol 10(4):603–614CrossRefGoogle Scholar
  112. 112.
    Xu Y, Wu J, Wang H, Li H, Di N, Song L, Li S, Li D, Xiang Y, Liu W, Mo X, Zhou Q (2013) Fabrication of electrospun poly(L-lactide-co-ε-caprolactone)/collagen nanoyarn network as a novel, three-dimensional, macroporous, aligned scaffold for tendon tissue engineering. Tissue Eng Part C Methods 19(12):925–936CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Li DX, Xia YN (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170CrossRefGoogle Scholar
  114. 114.
    Song W, Chen L, Seta J, Markel DC, Yu X, Ren W (2018) Corona discharge: a novel approach to fabricate three-dimensional electrospun nanofibers for bone tissue engineering. ACS Biomater Sci Eng 4(10):3624CrossRefGoogle Scholar
  115. 115.
    Chen L et al (2020) Preparation of electrospun nanofibers with desired microstructures using a programmed three-dimensional (3D) nanofiber collector. Mater Sci Eng C 106:110188Google Scholar
  116. 116.
    Song W et al (2012) Electrospun polyvinyl alcohol-collagen-hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells. Nanotechnology 23(11):115101CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Kim GM, Asran AS, Michler GH, Simon P, Kim JS (2008) Electrospun PVA/HAp nanocomposite nanofibers: biomimetics of mineralized hard tissues at a lower level of complexity. Bioinspir Biomim 3(4):046003CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Song W et al (2017) Doxycycline-loaded coaxial nanofiber coating of titanium implants enhances osseointegration and inhibits Staphylococcus aureus infection. Biomed Mater 12(4):045008CrossRefGoogle Scholar
  119. 119.
    Szentivanyi A et al (2011) Electrospun cellular microenvironments: understanding controlled release and scaffold structure. Adv Drug Deliv Rev 63(4):209–220CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Song W et al (2011) A novel strontium-doped calcium polyphosphate/erythromycin/poly(vinyl alcohol) composite for bone tissue engineering. J Biomed Mater Res A 98(3):359–371CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Fu SZ et al (2014) In vitro and in vivo degradation behavior of n-HA/PCL-Pluronic-PCL polyurethane composites. J Biomed Mater Res A 102(2):479–486CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Lu L et al (2000) In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials 21(18):1837–1845CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Xiao D et al (2014) Room-temperature attachment of PLGA microspheres to titanium surfaces for implant-based drug release. Appl Surf Sci 309:112–118CrossRefGoogle Scholar
  124. 124.
    Abdal-hay A, Hwang M-G, Lim JK (2012) In vitro bioactivity of titanium implants coated with bicomponent hybrid biodegradable polymers. J Sol-Gel Sci Technol 64(3):756–764CrossRefGoogle Scholar
  125. 125.
    Xu L, Yamamoto A (2012) Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloids Surf B Biointerfaces 93:67–74CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Nielsen SP (2004) The biological role of strontium. Bone 35(3):583–588CrossRefGoogle Scholar
  127. 127.
    Meka SRK, Jain S, Chatterjee K (2016) Strontium eluting nanofibers augment stem cell osteogenesis for bone tissue regeneration. Colloids Surf B: Biointerfaces 146:649–656CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Marie P (2003) Optimizing bone metabolism in osteoporosis: insight into the pharmacologic profile of strontium ranelate. Osteoporos Int 14(3):9–12CrossRefGoogle Scholar
  129. 129.
    Barbara A et al (2004) Normal matrix mineralization induced by strontium ranelate in MC3T3-E1 osteogenic cells. Metabolism 53(4):532–537CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Yang F et al (2011) Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling. Stem Cells 29(6):981–991CrossRefGoogle Scholar
  131. 131.
    Schumacher M et al (2013) A novel strontium (II)-modified calcium phosphate bone cement stimulates human-bone-marrow-derived mesenchymal stem cell proliferation and osteogenic differentiation in vitro. Acta Biomater 9(12):9547–9557CrossRefGoogle Scholar
  132. 132.
    Karrholm J et al (1994) Does early micromotion of femoral stem prostheses matter? 4-7-year stereoradiographic follow-up of 84 cemented prostheses. J Bone Joint Surg Br 76(6):912–917CrossRefGoogle Scholar
  133. 133.
    Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Park JW (2011) Increased bone apposition on a titanium oxide surface incorporating phosphate and strontium. Clin Oral Implants Res 22(2):230–234CrossRefGoogle Scholar
  135. 135.
    Chen L, Mazeh H, Guardia A, Song W, Begeman P, Markel DC, Ren W (2019) Sustained release of strontium (Sr2+) from polycaprolactone (PCL)/ poly (D,L-lactide-co-glycolide) (PLGA)-polyvinyl alcohol (PVA) coaxial nanofibers enhances osteoblastic differentiation. J Biomater Appl 34(4):533–545CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringWayne State University/IBIODetroitUSA
  2. 2.John D. Dingell VA Medical CenterDetroitUSA

Personalised recommendations