Recent Developments of Zn-based Medical Implants

  • Qichan Hu
  • Yingchao SuEmail author
  • Donghui ZhuEmail author


After decades of developing strategies to employ biodegradable metals in medical devices, there is an increasing interest to use zinc (Zn) and Zn-based alloys as novel and promising alternatives to magnesium and iron. Over the last decade, extensive research has been done on Zn regarding its mechanical properties, degradation behavior, and biocompatibility. This chapter summarizes the recent progress in improving the properties of pure Zn as well as Zn alloys to make them appropriate for medical applications, especially for orthopedic implantation.


Zinc Biodegradable metal Degradation Biocompatibility Orthopedic implant 


  1. 1.
    Takmakov P, Ruda K, Scott Phillips K, Isayeva IS, Krauthamer V, Welle CG (2015) Rapid evaluation of the durability of cortical neural implants using accelerated aging with reactive oxygen species. J Neural Eng 12(2):026003CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Huang Y, van Dessel J, Martens W, Lambrichts I, Zhong W-J, Ma G-W et al (2015) Sensory innervation around immediately vs. delayed loaded implants: a pilot study. Int J Oral Sci 7(1):49–55CrossRefGoogle Scholar
  3. 3.
    Waksman R, Pakala R (2010) Biodegradable and bioabsorbable stents. Curr Pharm Des 16(36):4041–4051CrossRefGoogle Scholar
  4. 4.
    Guo R, Merkel AR, Sterling JA, Davidson JM, Guelcher SA (2015) Substrate modulus of 3D-printed scaffolds regulates the regenerative response in subcutaneous implants through the macrophage phenotype and Wnt signaling. Biomaterials 73:85–95CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yahyavi-Firouz-Abadi N, Menias CO, Bhalla S, Siegel C, Gayer G, Katz DS (2015) Imaging of cosmetic plastic procedures and implants in the body and their potential complications. AJR Am J Roentgenol 204(4):707–715CrossRefGoogle Scholar
  6. 6.
    Kurtz SM, Devine JN (2007) PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28(32):4845–4869CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Klein MO, Schiegnitz E, Al-Nawas B (2014) Systematic review on success of narrow-diameter dental implants. Int J Oral Maxillofac Implants 29(Suppl):43–54CrossRefGoogle Scholar
  8. 8.
    Shen C, Liu X, Fan B, Lan P, Zhou F, Li X et al (2016) Mechanical properties, in vitro degradation behavior, hemocompatibility and cytotoxicity evaluation of Zn–1.2Mg alloy for biodegradable implants. RSC Adv 6(89):86410–86419CrossRefGoogle Scholar
  9. 9.
    Niinomi M (2008) Metallic biomaterials. J Artif Organs 11(3):105–110CrossRefGoogle Scholar
  10. 10.
    Katarivas Levy G, Ventura Y, Goldman J, Vago R, Aghion E (2016) Cytotoxic characteristics of biodegradable EW10X04 Mg alloy after Nd coating and subsequent heat treatment. Mater Sci Eng C Mater Biol Appl 62:752–761CrossRefGoogle Scholar
  11. 11.
    Farb A, Weber DK, Kolodgie FD, Burke AP, Virmani R (2002) Morphological predictors of restenosis after coronary stenting in humans. Circulation 105(25):2974–2980CrossRefGoogle Scholar
  12. 12.
    Cook S, Wenaweser P, Togni M, Billinger M, Morger C, Seiler C et al (2007) Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation 115(18):2426–2434CrossRefGoogle Scholar
  13. 13.
    Chung W-S, Park C-S, Seung K-B, Kim P-J, Lee J-M, Koo B-K et al (2008) The incidence and clinical impact of stent strut fractures developed after drug-eluting stent implantation. Int J Cardiol 125(3):325–331CrossRefGoogle Scholar
  14. 14.
    Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R et al (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12(5–6):63–72CrossRefGoogle Scholar
  15. 15.
    Li H, Zheng Y, Qin L (2014) Progress of biodegradable metals. Prog Nat Sci Mater Int 24(5):414–422CrossRefGoogle Scholar
  16. 16.
    Ramcharitar S, Serruys PW (2008) Fully biodegradable coronary stents. Am J Cardiovasc Drugs 8(5):305–314CrossRefGoogle Scholar
  17. 17.
    Mueller PP, Arnold S, Badar M, Bormann D, Bach F-W, Drynda A et al (2012) Histological and molecular evaluation of iron as degradable medical implant material in a murine animal model. J Biomed Mater Res A 100A(11):2881–2889CrossRefGoogle Scholar
  18. 18.
    Hermawan H, Alamdari H, Mantovani D, Dubé D (2008) Iron–manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metall 51(1):38–45CrossRefGoogle Scholar
  19. 19.
    Hermawan H, Purnama A, Dube D, Couet J, Mantovani D (2010) Fe-Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomater 6(5):1852–1860CrossRefGoogle Scholar
  20. 20.
    Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A (2003) Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 89(6):651–656CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mostaed E, Sikora-Jasinska M, Mostaed A, Loffredo S, Demir AG, Previtali B et al (2016) Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation. J Mech Behav Biomed Mater 60:581–602CrossRefGoogle Scholar
  22. 22.
    Gu X-N, Zheng Y-F (2010) A review on magnesium alloys as biodegradable materials. Front Mater Sci China 4(2):111–115CrossRefGoogle Scholar
  23. 23.
    Wang C, Yu Z, Cui Y, Zhang Y, Yu S, Qu G et al (2016) Processing of a novel Zn alloy micro-tube for biodegradable vascular stent application. J Mater Sci Technol 32(9):925–929CrossRefGoogle Scholar
  24. 24.
    Guillory RJ, Bowen PK, Hopkins SP, Shearier ER, Earley EJ, Gillette AA et al (2016) Corrosion characteristics dictate the long-term inflammatory profile of degradable zinc arterial implants. ACS Biomater Sci Eng 2(12):2355–2364CrossRefGoogle Scholar
  25. 25.
    Ma J, Zhao N, Zhu D (2015) Endothelial cellular responses to biodegradable metal zinc. ACS Biomater Sci Eng 1(11):1174–1182CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Murni NS, Dambatta MS, Yeap SK, Froemming GRA, Hermawan H (2015) Cytotoxicity evaluation of biodegradable Zn-3Mg alloy toward normal human osteoblast cells. Mater Sci Eng C Mater Biol Appl 49:560–566CrossRefGoogle Scholar
  27. 27.
    Aghion E, Levy G (2010) The effect of Ca on the in vitro corrosion performance of biodegradable Mg–Nd–Y–Zr alloy. J Mater Sci 45(11):3096–3101CrossRefGoogle Scholar
  28. 28.
    Zhao S, McNamara CT, Bowen PK, Verhun N, Braykovich JP, Goldman J et al (2017) Structural characteristics and in vitro biodegradation of a novel Zn-Li alloy prepared by induction melting and hot rolling. Metall Mater Trans A 48(3):1204–1215CrossRefGoogle Scholar
  29. 29.
    Kim S-M, Jo J-H, Lee S-M, Kang M-H, Kim H-E, Estrin Y et al (2014) Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response. J Biomed Mater Res A 102(2):429–441CrossRefGoogle Scholar
  30. 30.
    Wong HM, Yeung KWK, Lam KO, Tam V, Chu PK, Luk KDK et al (2010) A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 31(8):2084–2096CrossRefGoogle Scholar
  31. 31.
    Seitz J-M, Durisin M, Goldman J, Drelich JW (2015) Recent advances in biodegradable metals for medical sutures: a critical review. Adv Healthc Mater 4(13):1915–1936CrossRefGoogle Scholar
  32. 32.
    Wang C, Yang HT, Li X, Zheng YF (2016) In vitro evaluation of the feasibility of commercial Zn alloys as biodegradable metals. J Mater Sci Technol 32(9):909–918CrossRefGoogle Scholar
  33. 33.
    Törne K, Larsson M, Norlin A, Weissenrieder J (2016) Degradation of zinc in saline solutions, plasma, and whole blood. J Biomed Mater Res B Appl Biomater 104(6):1141–1151CrossRefGoogle Scholar
  34. 34.
    Liu X, Sun J, Qiu K, Yang Y, Pu Z, Li L et al (2016) Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn–1.5Mg alloy. J Alloys Compd 664:444–452CrossRefGoogle Scholar
  35. 35.
    Niu J, Tang Z, Huang H, Pei J, Zhang H, Yuan G et al (2016) Research on a Zn-Cu alloy as a biodegradable material for potential vascular stents application. Mater Sci Eng C Mater Biol Appl 69:407–413CrossRefGoogle Scholar
  36. 36.
    Huang T, Zheng Y, Han Y (2016) Accelerating degradation rate of pure iron by zinc ion implantation. Regen Biomater 3(4):205–215CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Vojtěch D, Kubásek J, Serák J, Novák P (2011) Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater 7(9):3515–3522CrossRefGoogle Scholar
  38. 38.
    Guleryuz LF, Ipek R, Arıtman I, Karaoglu S (2017) Microstructure and mechanical properties of Zn-Mg alloys as implant materials manufactured by powder metallurgy method. AIP Conf Proc 1809(1):020020CrossRefGoogle Scholar
  39. 39.
    Tapiero H, Tew KD (2003) Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother 57(9):399–411CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Calesnick B, Dinan AM (1988) Zinc deficiency and zinc toxicity. Am Fam Physician 37(4):267–270PubMedGoogle Scholar
  41. 41.
    Trumbo P, Yates AA, Schlicker S, Poos M (2001) Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J Am Diet Assoc 101(3):294–301CrossRefGoogle Scholar
  42. 42.
    Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7(4):1342–1365CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Choi J, Kim H, Kim P, Jo E, Kim H-M, Lee M-Y et al (2015) Toxicity of zinc oxide nanoparticles in rats treated by two different routes: single intravenous injection and single oral administration. J Toxicol Environ Health A 78(4):226–243CrossRefGoogle Scholar
  44. 44.
    Wastney ME, Aamodt RL, Rumble WF, Henkin RI (1986) Kinetic analysis of zinc metabolism and its regulation in normal humans. Am J Physiol 251(2):R398–R408PubMedGoogle Scholar
  45. 45.
    Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73(1):79–118CrossRefGoogle Scholar
  46. 46.
    Su Y, Cockerill I, Wang Y, Qin Y-X, Chang L, Zheng Y et al (2019) Zinc-based biomaterials for regeneration and therapy. Trends Biotechnol 37(4):428–441CrossRefGoogle Scholar
  47. 47.
    Mocchegiani E, Muzzioli M, Giacconi R (2000) Zinc, metallothioneins, immune responses, survival and ageing. Biogerontology 1(2):133–143CrossRefGoogle Scholar
  48. 48.
    Falchuk KH (1998) The molecular basis for the role of zinc in developmental biology. Mol Cell Biochem 188(1–2):41–48CrossRefGoogle Scholar
  49. 49.
    Cousins RJ (1998) A role of zinc in the regulation of gene expression. Proc Nutr Soc 57(2):307–311CrossRefGoogle Scholar
  50. 50.
    Hennig B, Toborek M, Mcclain CJ (1996) Antiatherogenic properties of zinc: implications in endothelial cell metabolism. Nutrition 12(10):711–717CrossRefGoogle Scholar
  51. 51.
    Katarivas Levy G, Goldman J, Aghion E, Katarivas Levy G, Goldman J, Aghion E (2017) The prospects of zinc as a structural material for biodegradable implants—a review paper. Metals 7(10):402CrossRefGoogle Scholar
  52. 52.
    Yang J, Gao F, Han D, Yang L, Kong X, Wei M et al (2018) Multifunctional zinc-based hollow nanoplatforms as a smart pH-responsive drug delivery system to enhance in vivo tumor-inhibition efficacy. Mater Des 139:172–180CrossRefGoogle Scholar
  53. 53.
    Kang Y, Wu Y-Z, Hu X, Xu X, Sun J, Geng R et al (2017) Multicolor bioimaging with biosynthetic zinc nanoparticles and their application in tumor detection. Sci Rep 7(1):45313CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Li H, Yang H, Zheng Y, Zhou F, Qiu K, Wang X (2015) Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. Mater Des 83:95–102CrossRefGoogle Scholar
  55. 55.
    Roohani N, Hurrell R, Kelishadi R, Schulin R (2013) Zinc and its importance for human health: an integrative review. J Res Med Sci 18(2):144–157PubMedPubMedCentralGoogle Scholar
  56. 56.
    Bowen PK, Shearier ER, Zhao S, Guillory RJ, Zhao F, Goldman J et al (2016) Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-alloys. Adv Healthc Mater 5(10):1121–1140CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Brzóska MM, Rogalska J (2013) Protective effect of zinc supplementation against cadmium-induced oxidative stress and the RANK/RANKL/OPG system imbalance in the bone tissue of rats. Toxicol Appl Pharmacol 272(1):208–220CrossRefGoogle Scholar
  58. 58.
    Luo X, Barbieri D, Davison N, Yan Y, de Bruijn JD, Yuan H (2014) Zinc in calcium phosphate mediates bone induction: in vitro and in vivo model. Acta Biomater 10(1):477–485CrossRefGoogle Scholar
  59. 59.
    Prakasam M, Locs J, Salma-Ancane K, Loca D, Largeteau A, Berzina-Cimdina L (2017) Biodegradable materials and metallic implants—a review. J Funct Biomater 8(4):44CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Shearier ER, Bowen PK, He W, Drelich A, Drelich J, Goldman J et al (2016) In vitro cytotoxicity, adhesion, and proliferation of human vascular cells exposed to zinc. ACS Biomater Sci Eng 2(4):634–642CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Liu X, Sun J, Zhou F, Yang Y, Chang R, Qiu K et al (2016) Corrigendum to “Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application” [Mater. Des. 94 (2016) 95–104]. Mater Des 96:377CrossRefGoogle Scholar
  62. 62.
    Drelich AJ, Zhao S, Guillory RJ, Drelich JW, Goldman J (2017) Long-term surveillance of zinc implant in murine artery: surprisingly steady biocorrosion rate. Acta Biomater 58:539–549CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Qu Q, Li L, Bai W, Yan C, Cao C (2005) Effects of NaCl and NH4Cl on the initial atmospheric corrosion of zinc. Corros Sci 47(11):2832–2840CrossRefGoogle Scholar
  64. 64.
    Mouanga M, Berçot P, Rauch JY (2010) Comparison of corrosion behaviour of zinc in NaCl and in NaOH solutions. Part I: corrosion layer characterization. Corros Sci 52(12):3984–3992CrossRefGoogle Scholar
  65. 65.
    Zhang XG (2013) Corrosion and electrochemistry of zinc. Springer Science & Business Media, New York, 481 pGoogle Scholar
  66. 66.
    Thomas S, Birbilis N, Venkatraman MS, Cole IS (2012) Corrosion of zinc as a function of pH. Corrosion 68(1):015009-1–015009-9CrossRefGoogle Scholar
  67. 67.
    Thomas S, Cole IS, Gonzalez-Garcia Y, Chen M, Musameh M, Mol JMC et al (2014) Oxygen consumption upon electrochemically polarised zinc. J Appl Electrochem 44(6):747–757CrossRefGoogle Scholar
  68. 68.
    Yang H, Wang C, Liu C, Chen H, Wu Y, Han J et al (2017) Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials 145:92–105CrossRefGoogle Scholar
  69. 69.
    Sikora-Jasinska M, Mostaed E, Mostaed A, Beanland R, Mantovani D, Vedani M (2017) Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications. Mater Sci Eng C Mater Biol Appl 77:1170–1181CrossRefGoogle Scholar
  70. 70.
    Li HF, Xie XH, Zheng YF, Cong Y, Zhou FY, Qiu KJ et al (2015) Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci Rep 5:10719CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Zhu D, Cockerill I, Su Y, Zhang Z, Fu J, Lee K-W et al (2019) Mechanical strength, biodegradation, and in vitro and in vivo biocompatibility of Zn biomaterials. ACS Appl Mater Interfaces 11(7):6809–6819CrossRefGoogle Scholar
  72. 72.
    Bakhsheshi-Rad HR, Hamzah E, Low HT, Kasiri-Asgarani M, Farahany S, Akbari E et al (2017) Fabrication of biodegradable Zn-Al-Mg alloy: mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities. Mater Sci Eng C Mater Biol Appl 73:215–219CrossRefGoogle Scholar
  73. 73.
    Bowen PK, Seitz J-M, Guillory RJ, Braykovich JP, Zhao S, Goldman J et al (2018) Evaluation of wrought Zn-Al alloys (1, 3, and 5 wt % Al) through mechanical and in vivo testing for stent applications. J Biomed Mater Res B Appl Biomater 106(1):245–258CrossRefGoogle Scholar
  74. 74.
    Port F (1991) Zinc handbook: properties, processing, and use in design. CRC Press, Boca RatonGoogle Scholar
  75. 75.
    Gong H, Wang K, Strich R, Zhou JG (2015) In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy. J Biomed Mater Res B Appl Biomater 103(8):1632–1640CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Bowen PK, Drelich J, Goldman J (2013) Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater 25(18):2577–2582CrossRefGoogle Scholar
  77. 77.
    Bowen PK, Guillory RJ, Shearier ER, Seitz J-M, Drelich J, Bocks M et al (2015) Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents. Mater Sci Eng C Mater Biol Appl 56:467–472CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Yamaguchi M (2010) Role of nutritional zinc in the prevention of osteoporosis. Mol Cell Biochem 338(1):241–254CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Mahdavi-Roshan M, Ebrahimi M, Ebrahimi A (2015) Copper, magnesium, zinc and calcium status in osteopenic and osteoporotic post-menopausal women. Clin Cases Miner Bone Metab 12(1):18–21PubMedPubMedCentralGoogle Scholar
  80. 80.
    Baltaci AK, Sunar F, Mogulkoc R, Acar M, Toy H (2014) The effect of zinc deficiency and zinc supplementation on element levels in the bone tissue of ovariectomized rats: histopathologic changes. Arch Physiol Biochem 120(2):80–85CrossRefGoogle Scholar
  81. 81.
    Saino E, Grandi S, Quartarone E, Maliardi V, Galli D, Bloise N et al (2011) In vitro calcified matrix deposition by human osteoblasts onto a zinc-containing bioactive glass. Eur Cell Mater 21:59–72; discussion 72CrossRefGoogle Scholar
  82. 82.
    Zreiqat H, Ramaswamy Y, Wu C, Paschalidis A, Lu Z, James B et al (2010) The incorporation of strontium and zinc into a calcium–silicon ceramic for bone tissue engineering. Biomaterials 31(12):3175–3184CrossRefGoogle Scholar
  83. 83.
    Yang H, Qu X, Lin W, Wang C, Zhu D, Dai K et al (2018) In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications. Acta Biomater 71:200–214CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of North TexasDentonUSA
  2. 2.Department of Biomedical EngineeringStony Brook UniversityStony BrookUSA

Personalised recommendations