Advertisement

Scaffolds for Tissue Engineering: A State-of-the-Art Review Concerning Types, Properties, Materials, Processing, and Characterization

  • Andréa Arruda Martins Shimojo
  • Isabella Caroline Pereira Rodrigues
  • Amanda Gomes Marcelino Perez
  • Eliana Maria Barbosa Souto
  • Laís Pellizzer GabrielEmail author
  • Thomas Webster
Chapter
  • 123 Downloads

Abstract

Given the constant lack of donors for organ transplantation, tissue engineering has been considered a very important tool for regenerative medicine to overcome the limitations of conventional treatments. Tissue engineering is mainly based on obtaining biodegradable three-dimensional (3D) scaffolds. Based on a bibliometric study covering the last three decades of scientific research in scaffolds, this review will address the existing types of scaffolds (solid and fluid); the necessary scaffold properties for adequate tissue regeneration, such as biocompatibility and adequate mechanical properties; the materials that can be used to manufacture the scaffold, from metals to natural and synthetic polymers; scaffold fabrication techniques, considering their advantages and disadvantages and which are the main selection criteria; and finally, the methods of scaffold characterization, such as chemical, morphological, mechanical, and biological.

Keywords

Scaffold Tissue engineering Biomaterial Biopolymer Biodegradable Tissue regeneration 

Notes

Acknowledgements

This work was supported by FAPESP, grant #2017/13273-6, São Paulo Research Foundation and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

References

  1. 1.
    Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926. ISSN 0036–8075. Disponível em: < <Go to ISI>://WOS:A1993LB79100031 >CrossRefGoogle Scholar
  2. 2.
    Crane D, Everts P (2008) Platelet rich plasma (PRP) matrix grafts. Pract Pain Manage 8(1):11–26CrossRefGoogle Scholar
  3. 3.
    Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55(2):141–150. ISSN 0021–9304. Disponível em: < <Go to ISI>://WOS:000167221200001 >CrossRefGoogle Scholar
  4. 4.
    Barnett JR, Pomeroy GC (2007) Use of platelet-rich plasma and bone marrow-derived mesenchymal stem cells in foot and ankle surgery. Tech Foot Ankle Surg 6(2):89–94. ISSN 1536-0644CrossRefGoogle Scholar
  5. 5.
    Cross LM et al (2016) Nanoengineered biomaterials for repair and regeneration of orthopedic tissue interfaces. Acta Biomater 42:2–17. ISSN 1742–7061. Disponível em: < <Go to ISI>://WOS:000383292700001 >CrossRefGoogle Scholar
  6. 6.
    van Eck NJ, Waltman L (2009) VOSviewer: a computer program for bibliometric mapping. In: 12th international conference of the international-society-for-scientometrics-and-informetrics, Rio de Janeiro, Brazil, 14–17 July 2009, pp 886–897Google Scholar
  7. 7.
    Kim YS et al (2019) An overview of the tissue engineering market in the United States from 2011 to 2018. Tissue Eng Part A 25(1–2):1–8. ISSN 1937–3341. Disponível em: < <Go to ISI>://WOS:000463809500001 >CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Poursamar SA et al (2016) The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold. Mater Sci Eng C 63:1–9. ISSN 0928–4931. Disponível em: < <Go to ISI>://WOS:000374916800001 >CrossRefGoogle Scholar
  9. 9.
    Naahidi S et al (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 35(5):530–544. ISSN 0734–9750. Disponível em: < <Go to ISI>://WOS:000405767000002 >CrossRefGoogle Scholar
  10. 10.
    Jakobsson A et al (2017) Three-dimensional functional human neuronal networks in uncompressed low-density electrospun fiber scaffolds. NanomedNanotechnol Biol Med 13(4):1563–1573. ISSN 1549–9634. Disponível em: < <Go to ISI>://WOS:000402678800022 >CrossRefGoogle Scholar
  11. 11.
    Lee WD et al (2017) Sol gel-derived hydroxyapatite films over porous calcium polyphosphate substrates for improved tissue engineering of osteochondral-like constructs. Acta Biomater 62:352–361. ISSN 1742–7061. Disponível em: < <Go to ISI>://WOS:000413175200028 >CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Neufurth M et al (2017) 3D printing of hybrid biomaterials for bone tissue engineering: calcium-polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomater 64:377–388. ISSN 1742–7061. Disponível em: < <Go to ISI>://WOS:000416498200033 >CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Singh N et al (2016) Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth. Nanoscale 8(15):8288–8299. ISSN 2040–3364. Disponível em: < <Go to ISI>://WOS:000374159600057 >CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lachman N et al (2017) Synthesis of polymer bead nano-necklaces on aligned carbon nanotube scaffolds. Nanotechnology 28(24):6. ISSN 0957–4484. Disponível em: < <Go to ISI>://WOS:000402514600001 >CrossRefGoogle Scholar
  15. 15.
    Dutta RC, Dutta AK (2009) Cell-interactive 3D-scaffold; advances and applications. Biotechnol Adv 27(4):334–339. ISSN 0734–9750. Disponível em: < <Go to ISI>://WOS:000267478100003 >CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhao X et al (2017) Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 122:34–47. ISSN 0142–9612. Disponível em: < <Go to ISI>://WOS:000394472500004 >CrossRefGoogle Scholar
  17. 17.
    Xing RT et al (2016) An injectable self-assembling collagen-gold hybrid hydrogel for combinatorial antitumor photothermal/photodynamic therapy. Adv Mater 28(19):3669–3676. ISSN 0935–9648. Disponível em: < <Go to ISI>://WOS:000376480500005 >CrossRefGoogle Scholar
  18. 18.
    Dhandayuthapani B et al (2011) Polymeric scaffolds in tissue engineering application: a review. Int J Polym Sci 2011:19. ISSN 1687–9422. Disponível em: < <Go to ISI>://WOS:000307633400011 >CrossRefGoogle Scholar
  19. 19.
    Liu XH, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486. ISSN 0090–6964. Disponível em: < <Go to ISI>://WOS:000222465100019 >CrossRefGoogle Scholar
  20. 20.
    Chang HI, Wang Y (2011) Cell responses to surface and architecture of tissue engineering scaffolds. In: Regenerative medicine and tissue engineering-cells and biomaterials. InTechGoogle Scholar
  21. 21.
    Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524. ISSN 1476–1122. Disponível em: < <Go to ISI>://WOS:000230190900013 >CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Staiger MP et al (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734. ISSN 0142–9612. Disponível em: < <Go to ISI>://WOS:000234962500007 >CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Ran JB et al (2017) Constructing multi-component organic/inorganic composite bacterial cellulose-gelatin/hydroxyapatite double-network scaffold platform for stem cell-mediated bone tissue engineering. Mater Sci Eng C 78:130–140. ISSN 0928–4931. Disponível em: < <Go to ISI>://WOS:000404944700016 >CrossRefGoogle Scholar
  24. 24.
    Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomat 6(5):1680–1692. ISSN 1742–7061. Disponível em: < <Go to ISI>://WOS:000277847500002 >CrossRefGoogle Scholar
  25. 25.
    Palacios C (2006) The role of nutrients in bone health, from A to Z. Crit Rev Food Sci Nutr 46(8):621–628. ISSN 1040–8398. Disponível em: < <Go to ISI>://WOS:000241365800002 >CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Geesala R et al (2016) Porous polymer scaffold for on-site delivery of stem cells—protects from oxidative stress and potentiates wound tissue repair. Biomaterials 77:1–13. ISSN 0142–9612. Disponível em: < <Go to ISI>://WOS:000367118200001 >CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Oh SH, Lee JH (2013) Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility. Biomed Mater 8(1):16. ISSN 1748–6041. Disponível em: < <Go to ISI>://WOS:000314115100002 >CrossRefGoogle Scholar
  28. 28.
    Yang SF et al (2001) The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng 7(6):679–689. ISSN 1076–3279. Disponível em: < <Go to ISI>://WOS:000172903100001 >CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yu JH et al (2017) Fabrication and characterization of shape memory polyurethane porous scaffold for bone tissue engineering. J Biomed Mater Res A 105(4):1132–1137. ISSN 1549–3296. Disponível em: < <Go to ISI>://WOS:000395008300018 >CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hsieh FY, LIN HH, Hsu SH (2015) 3D bioprinting of neural stern cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71:48–57. ISSN 0142–9612. Disponível em: < <Go to ISI>://WOS:000362612800005 >CrossRefGoogle Scholar
  31. 31.
    Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4–5):207–233. ISSN 0169-409X. Disponível em: < <Go to ISI>://WOS:000247714800003 >CrossRefGoogle Scholar
  32. 32.
    Trinca RB et al (2017) Electrospun multilayer chitosan scaffolds as potential wound dressings for skin lesions. Eur Polym J 88:161–170. ISSN 0014–3057. Disponível em: < <Go to ISI>://WOS:000396952500014 >CrossRefGoogle Scholar
  33. 33.
    Shimojo AAM et al (2015) Performance of PRP associated with porous chitosan as a composite scaffold for regenerative medicine. Sci World J 2015:396131. ISSN 2356–6140CrossRefGoogle Scholar
  34. 34.
    Shimojo AAM et al (2016) In vitro performance of injectable chitosan-tripolyphosphate scaffolds combined with platelet-rich plasma. Tissue Eng Regen Med 13(1):21–30. ISSN 1738-2696CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Shimojo AAM et al (2016) Stabilization of porous chitosan improves the performance of its association with platelet-rich plasma as a composite scaffold. Mater Sci Eng C Mater Biol Appl 60:538–546CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Moghadam MZ et al (2017) Formation of porous HPCL/LPCL/HA scaffolds with supercritical CO2 gas foaming method. J Mech Behav Biomed Mater 69:115–127. ISSN 1751–6161. Disponível em: < <Go to ISI>://WOS:000400199600012 >CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Deng Y et al (2017) A novel akermanite/poly (lactic-co-glycolic acid) porous composite scaffold fabricated via a solvent casting-particulate leaching method improved by solvent self-proliferating process. Regenerat Biomater 4(4):233–242. ISSN 2056–3418. Disponível em: < <Go to ISI>://WOS:000409116500004 >CrossRefGoogle Scholar
  38. 38.
    Repanas A, Andriopoulou S, Glasmacher B (2016) The significance of electrospinning as a method to create fibrous scaffolds for biomedical engineering and drug delivery applications. J Drug Deliv Sci Tech 31:137–146. ISSN 1773–2247. Disponível em: < <Go to ISI>://WOS:000370905200015 >CrossRefGoogle Scholar
  39. 39.
    Liu W et al (2017) Low-temperature deposition manufacturing: a novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold. Mater Sci Eng C Mater Biol Appl 70:976–982. ISSN 0928–4931. Disponível em: < <Go to ISI>://WOS:000387625700007 >CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Guo J et al (2017) Novel porous poly(propylene fumarate-co-caprolactone) scaffolds fabricated by thermally induced phase separation. J Biomed Mater Res A 105(1):226–235. ISSN 1549–3296. Disponível em: < <Go to ISI>://WOS:000389145400024 >CrossRefGoogle Scholar
  41. 41.
    Janik H, Marzec M (2015) A review: fabrication of porous polyurethane scaffolds. Mater Sci Eng CMater Biol Appl 48:586–591. ISSN 0928–4931. Disponível em: < <Go to ISI>://WOS:000348749200073 >CrossRefGoogle Scholar
  42. 42.
    Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13):2363–2378. ISSN 0142–9612. Disponível em: < <Go to ISI>://WOS:000182280400027 >CrossRefGoogle Scholar
  43. 43.
    Ma PX, Choi JW (2001) Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng 7(1):23–33. ISSN 2152–4947. Disponível em: < <Go to ISI>://WOS:000167235200003 >CrossRefGoogle Scholar
  44. 44.
    Poursamar SA et al (2015) Gelatin porous scaffolds fabricated using a modified gas foaming technique: characterisation and cytotoxicity assessment. Mater Sci Eng C Mater Biol Appl 48:63–70. ISSN 0928–4931. Disponível em: < <Go to ISI>://WOS:000348749200009 >CrossRefGoogle Scholar
  45. 45.
    Zhang J et al (2015) Pore architecture and cell viability on freeze dried 3D recombinant human collagen-peptide (RHC)-chitosan scaffolds. Mater Sci Eng C Mater Biol Appl 49:174–182. ISSN 0928–4931. Disponível em: < <Go to ISI>://WOS:000350514100018 >CrossRefGoogle Scholar
  46. 46.
    Vishwanath V, Pramanik K, Biswas A (2016) Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. J Biomater Sci Polym Ed 27(7):657–674. ISSN 0920–5063. Disponível em: < <Go to ISI>://WOS:000373015000008 >CrossRefGoogle Scholar
  47. 47.
    Perez-Puyana V et al (2019) Influence of the processing variables on the microstructure and properties of gelatin-based scaffolds by freeze-drying. J Appl Polym Sci 136(25):8. ISSN 0021–8995. Disponível em: < <Go to ISI>://WOS:000462061700025 >CrossRefGoogle Scholar
  48. 48.
    Conoscenti G et al (2017) PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size. Mater Sci Eng C Mater Biol Appl 80:449–459. ISSN 0928–4931. Disponível em: < <Go to ISI>://WOS:000410254400053 >CrossRefGoogle Scholar
  49. 49.
    Bazbouz MB et al (2019) Dry-jet wet electrospinning of native cellulose microfibers with macroporous structures from ionic liquids. J Appl Poly Sci 136(10):15. ISSN 0021–8995. Disponível em: < <Go to ISI>://WOS:000453915300014 >CrossRefGoogle Scholar
  50. 50.
    Shamsabadi AS et al (2019) Electrospinning of gold nanoparticles incorporated PAN nanofibers via in-situ laser ablation of gold in electrospinning solution. Mater Res Exp 6(5):12. ISSN 2053–1591. Disponível em: < <Go to ISI>://WOS:000459994100003 >Google Scholar
  51. 51.
    Wang WY et al (2018) Electrospinning preparation of a large surface area, hierarchically porous, and interconnected carbon nanofibrous network using polysulfone as a sacrificial polymer for high performance supercapacitors. RSC Adv 8(50):28480–28486. ISSN 2046–2069. Disponível em: < <Go to ISI>://WOS:000442616800023 >CrossRefGoogle Scholar
  52. 52.
    Hou T et al (2017) Highly porous fibers prepared by centrifugal spinning. Mater Des 114:303–311. ISSN 0264–1275. Disponível em: < <Go to ISI>://WOS:000390650800038 >CrossRefGoogle Scholar
  53. 53.
    Rogalski JJ, Bastiaansen CWM, Peijs T (2017) Rotary jet spinning review—a potential high yield future for polymer nanofibers. Nanocomposites 3(4):97–121. ISSN 2055–0324. Disponível em: < <Go to ISI>://WOS:000424579900001 >CrossRefGoogle Scholar
  54. 54.
    Gleadall A et al (2018) Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance. Burns Trauma 6:16. ISSN 2321–3868. Disponível em: < <Go to ISI>://WOS:000437332900001 >CrossRefGoogle Scholar
  55. 55.
    Li Y et al (2018) Additively manufactured biodegradable porous magnesium. Acta Biomater 67:378–392. ISSN 1742–7061. Disponível em: < <Go to ISI>://WOS:000424853600033 >CrossRefGoogle Scholar
  56. 56.
    Salmoria GV et al (2018) Properties of PLDLA/bioglass scaffolds produced by selective laser sintering. Polym Bull 75(3):1299–1309. ISSN 0170–0839. Disponível em: < <Go to ISI>://WOS:000425107700025 >CrossRefGoogle Scholar
  57. 57.
    Yan RZ et al (2018) Electron beam melting in the fabrication of three-dimensional mesh titanium mandibular prosthesis scaffold. Sci Rep 8:10. ISSN 2045–2322. Disponível em: < <Go to ISI>://WOS:000422637200009 >CrossRefGoogle Scholar
  58. 58.
    Jang J et al (2018) Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics. Biomaterials 156:88–106. ISSN 0142–9612. Disponível em: < <Go to ISI>://WOS:000419539100008 >CrossRefGoogle Scholar
  59. 59.
    Choi YJ et al (2016) 3D cell printing of functional skeletal muscle constructs using skeletal muscle-derived bioink. Adv Healthc Mater 5(20):2636–2645. ISSN 2192–2640. Disponível em: < <Go to ISI>://WOS:000387158900005 >CrossRefGoogle Scholar
  60. 60.
    Ahn G et al (2017) Precise stacking of decellularized extracellular matrix based 3D cell-laden constructs by a 3D cell printing system equipped with heating modules. Sci Rep 7:11. ISSN 2045–2322. Disponível em: < <Go to ISI>://WOS:000407864400005 >CrossRefGoogle Scholar
  61. 61.
    Eibl D, Eibl R (2009) Bioreactors for mammalian cells: general overview. In: Cell and tissue reaction engineering: with a contribution by Martin Fussenegger and Wilfried Weber. Springer, Berlin, p 55–82. ISBN 978-3-540-68182-3Google Scholar
  62. 62.
    Gelinsky M, Bernhardt A, Milan F (2015) Bioreactors in tissue engineering: advances in stem cell culture and three-dimensional tissue constructs. Eng Life Sci 15(7):670–677. ISSN 1618–0240. Disponível em: < <Go to ISI>://WOS:000363416600002 >CrossRefGoogle Scholar
  63. 63.
    Ravichandran A, Liu YC, Teoh SH (2018) Review: bioreactor design towards generation of relevant engineered tissues: focus on clinical translation. J Tissue Eng Regen Med 12(1):E7–E22. ISSN 1932–6254. Disponível em: < <Go to ISI>://WOS:000423431200002 >CrossRefGoogle Scholar
  64. 64.
    Vunjak-Novakovic G et al (1998) Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol Prog 14(2):193–202. ISSN 8756–7938. Disponível em: < <Go to ISI>://WOS:000073011600003 >CrossRefGoogle Scholar
  65. 65.
    Santoro M et al (2015) Flow perfusion effects on three-dimensional culture and drug sensitivity of Ewing sarcoma. Proc Natl Acad Sci U S A 112(33):10304–10309. ISSN 0027–8424. Disponível em: < <Go to ISI>://WOS:000359738300057 >CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ahmed S et al (2019) New generation of bioreactors that advance extracellular matrix modelling and tissue engineering. Biotechnol Lett 41(1):1–25. ISSN 0141–5492. Disponível em: < <Go to ISI>://WOS:000454783700001 >CrossRefGoogle Scholar
  67. 67.
    Lee SJ et al (2008) Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials 29(19):2891–2898. ISSN 0142–9612. Disponível em: < <Go to ISI>://WOS:000256144900008 >CrossRefGoogle Scholar
  68. 68.
    Shepherd JH et al (2018) Structurally graduated collagen scaffolds applied to the ex vivo generation of platelets from human pluripotent stem cell-derived megakaryocytes: enhancing production and purity. Biomaterials 182:135–144. ISSN 0142–9612. Disponível em: < <Go to ISI>://WOS:000444928200013 >CrossRefGoogle Scholar
  69. 69.
    Taylor DA et al (2018) Decellularized matrices in regenerative medicine. Acta Biomater 74:74–89. ISSN 1742–7061. Disponível em: < <Go to ISI>://WOS:000437998200005 >CrossRefGoogle Scholar
  70. 70.
    Sabetkish S et al (2015) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix liver scaffolds. J Biomed Mater Res A 103(4):1498–1508. ISSN 1549–3296. Disponível em: < <Go to ISI>://WOS:000350395300020 >CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Taylor DA et al (2018) Building a total bioartificial heart: harnessing nature to overcome the current hurdles. Artif Organs 42(10):970–982. ISSN 0160-564X. Disponível em: < <Go to ISI>://WOS:000449690800009 >CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Petersen TH et al (2010) Tissue-engineered lungs for in vivo implantation. Science 329(5991):538–541. ISSN 0036–8075. Disponível em: < <Go to ISI>://WOS:000280483500028 >CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Vo TN et al (2015) In vitro and in vivo evaluation of self-mineralization and biocompatibility of injectable, dual-gelling hydrogels for bone tissue engineering. J Control Release 205:25–34. ISSN 0168–3659. Disponível em: < <Go to ISI>://WOS:000352966200005 >CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Gong WH et al (2016) Hybrid small-diameter vascular grafts: anti-expansion effect of electrospun poly epsilon-caprolactone on heparin-coated decellularized matrices. Biomaterials 76:359–370. ISSN 0142–9612. Disponível em: < <Go to ISI>://WOS:000366961100030 >CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Cunniffe GM et al (2015) Porous decellularized tissue engineered hypertrophic cartilage as a scaffold for large bone defect healing. Acta Biomater 23:82–90. ISSN 1742–7061. Disponível em: < <Go to ISI>://WOS:000359964000009 >CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Yang Q et al (2017) Silk fibroin/cartilage extracellular matrix scaffolds with sequential delivery of TGF-beta 3 for chondrogenic differentiation of adipose-derived stem cells. Int J Nanomed 12:6721–6733. ISSN 1178–2013. Disponível em: < <Go to ISI>://WOS:000410234600001 >CrossRefGoogle Scholar
  77. 77.
    Kabirian F, Mozafari M (2019) Decellularized ECM-derived bioinks: prospects for the future. Methods. ISSN 1046-2023Google Scholar
  78. 78.
    Nichols JE et al (2018) Production and transplantation of bioengineered lung into a large-animal model. Sci Transl Med 10(452):12. ISSN 1946–6234. Disponível em: < <Go to ISI>://WOS:000440494900002 >CrossRefGoogle Scholar
  79. 79.
    Jang J et al (2017) 3D printed complex tissue construct using stem cell-laden decellularized extracellular matrix bioinks for cardiac repair. Biomaterials 112:264–274. ISSN 0142–9612. Disponível em: < <Go to ISI>://WOS:000389166700023 >CrossRefGoogle Scholar
  80. 80.
    Cox SC et al (2015) 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C Mater Biol Appl 47:237–247. ISSN 0928–4931. Disponível em: < <Go to ISI>://WOS:000347581600029 >CrossRefGoogle Scholar
  81. 81.
    Bao M et al (2014) Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering. ACS Appl Mater Interfaces 6(4):2611–2621. ISSN 1944–8244. Disponível em: < <Go to ISI>://WOS:000332144600055 >CrossRefGoogle Scholar
  82. 82.
    Venkatesan J, Bhatnagar I, Kim SK (2014) Chitosan-alginate biocomposite containing fucoidan for bone tissue engineering. Mar Drugs 12(1):300–316. ISSN 1660–3397. Disponível em: < <Go to ISI>://WOS:000336087500018 >CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Tetteh G et al (2014) Electrospun polyurethane/hydroxyapatite bioactive Scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles. J Mech Behav Biomed Mater 39:95–110. ISSN 1751–6161. Disponível em: < <Go to ISI>://WOS:000343338800010 >CrossRefGoogle Scholar
  84. 84.
    Sharma C et al (2016) Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 64:416–427. ISSN 0928–4931. Disponível em: < <Go to ISI>://WOS:000376547700051 >CrossRefGoogle Scholar
  85. 85.
    Lei Y et al (2017) Strontium hydroxyapatite/chitosan nanohybrid scaffolds with enhanced osteoinductivity for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 72:134–142. ISSN 0928–4931. Disponível em: < <Go to ISI>://WOS:000392165600017 >CrossRefGoogle Scholar
  86. 86.
    Rashkow JT, Lalwani G, Sitharaman B (2018) In vitro bioactivity of one- and two-dimensional nanoparticle-incorporated bone tissue engineering scaffolds. Tissue Eng Part A 24(7–8):641–652. ISSN 1937–3341. Disponível em: < <Go to ISI>://WOS:000429016300011 >CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Ling Y et al (2018) In vivo immunogenicity of bovine bone removed by a novel decellularization protocol based on supercritical carbon dioxide. Artif Cells Nanomed Biotechnol 46:334–344. ISSN 2169–1401. Disponível em: < <Go to ISI>://WOS:000459181400033 >CrossRefGoogle Scholar
  88. 88.
    Xu HL et al (2014) Water-stable three-dimensional ultrafine fibrous scaffolds from keratin for cartilage tissue engineering. Langmuir 30(28):8461–8470. ISSN 0743–7463. Disponível em: < <Go to ISI>://WOS:000339463000027 >CrossRefGoogle Scholar
  89. 89.
    Rahman S et al (2018) Optimising the decellularization of human elastic cartilage with trypsin for future use in ear reconstruction. Sci Rep 8:11. ISSN 2045–2322. Disponível em: < <Go to ISI>://WOS:000425190500001 >CrossRefGoogle Scholar
  90. 90.
    Markstedt K et al (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496. ISSN 1525–7797. Disponível em: < <Go to ISI>://WOS:000354503700005 >CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Sambudi NS et al (2015) Electrospun chitosan/poly(vinyl alcohol) reinforced with CaCO3 nanoparticles with enhanced mechanical properties and biocompatibility for cartilage tissue engineering. Compos Sci Tech 106:76–84. ISSN 0266–3538. Disponível em: < <Go to ISI>://WOS:000347868200007 >CrossRefGoogle Scholar
  92. 92.
    Fang JJ et al (2015) Novel injectable porous poly(gamma-benzyl-L-glutamate) microspheres for cartilage tissue engineering: preparation and evaluation. J Mater Chem B 3(6):1020–1031. ISSN 2050-750X. Disponível em: < <Go to ISI>://WOS:000349146700010 >CrossRefGoogle Scholar
  93. 93.
    Hung KC et al (2016) Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials 83:156–168. ISSN 0142–9612. Disponível em: < <Go to ISI>://WOS:000371651700013 >CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Naseri N et al (2016) 3-Dimensional porous nanocomposite scaffolds based on cellulose nanofibers for cartilage tissue engineering: tailoring of porosity and mechanical performance. RSC Adv 6(8):5999–6007. ISSN 2046–2069. Disponível em: < <Go to ISI>://WOS:000368858000002 >CrossRefGoogle Scholar
  95. 95.
    Bas O et al (2017) Biofabricated soft network composites for cartilage tissue engineering. Biofabrication 9(2):15. ISSN 1758–5082. Disponível em: < <Go to ISI>://WOS:000401338900001 >CrossRefGoogle Scholar
  96. 96.
    Xu YY et al (2018) Construction of bionic tissue engineering cartilage scaffold based on three-dimensional printing and oriented frozen technology. J Biomed Mater Res A 106(6):1664–1676. ISSN 1549–3296. Disponível em: < <Go to ISI>://WOS:000431004500020 >CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Han SS et al (2018) In situ cross-linkable hyaluronic acid hydrogels using copper free click chemistry for cartilage tissue engineering. Polym Chem 9(1):20–27. ISSN 1759–9954. Disponível em: < <Go to ISI>://WOS:000418370400003 >CrossRefGoogle Scholar
  98. 98.
    Silva AC et al (2019) Comparable decellularization of fetal and adult cardiac tissue explants as 3D-like platforms for in vitro studies. J Vis Exp (145):8. ISSN 1940-087X. Disponível em: < <Go to ISI>://WOS:000462909500001 >Google Scholar
  99. 99.
    Qazi TH et al (2014) Development and characterization of novel electrically conductive PANI-PGS composites for cardiac tissue engineering applications. Acta Biomater 10(6):2434–2445. ISSN 1742–7061. Disponível em: < <Go to ISI>://WOS:000336345900008 >CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Gaetani R et al (2015) Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials 61:339–348. ISSN 0142–9612. Disponível em: < <Go to ISI>://WOS:000357229900032 >CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Baheiraei N et al (2016) Electroactive polyurethane/siloxane derived from castor oil as a versatile cardiac patch, part I: synthesis, characterization, and myoblast proliferation and differentiation. J Biomed Mater Res A 104(3):775–787. ISSN 1549–3296. Disponível em: < <Go to ISI>://WOS:000369160800022 >CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Lakshmanan R et al (2016) Engineering a growth factor embedded nanofiber matrix niche to promote vascularization for functional cardiac regeneration. Biomaterials 97:176–195. ISSN 0142–9612. Disponível em: < <Go to ISI>://WOS:000377735800015 >CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Liu YW, Wang SY, Zhang R (2017) Composite poly(lactic acid)/chitosan nanofibrous scaffolds for cardiac tissue engineering. Int J Biol Macromol 103:1130–1137. ISSN 0141–8130. Disponível em: < <Go to ISI>://WOS:000408286400128 >CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    O’neill HS et al (2018) A collagen cardiac patch incorporating alginate microparticles permits the controlled release of hepatocyte growth factor and insulin-like growth factor-1 to enhance cardiac stem cell migration and proliferation. J Tissue Eng Regenerat Med 12(1):E384–E394. ISSN 1932–6254. Disponível em: < <Go to ISI>://WOS:000423431200036 >CrossRefGoogle Scholar
  105. 105.
    Rosellini E et al (2018) Protein/polysaccharide-based scaffolds mimicking native extracellular matrix for cardiac tissue engineering applications. J Biomed Mater Res A 106(3):769–781. ISSN 1549–3296. Disponível em: < <Go to ISI>://WOS:000423354200015 >CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Merle B et al (2018) Dynamic mechanical characterization of poly(glycerol sebacate)/poly (butylene succinate-butylene dilinoleate) blends for cardiac tissue engineering by flat punch nanoindentation. Mater Lett 221:115–118. ISSN 0167-577X. Disponível em: < <Go to ISI>://WOS:000430446700031 >CrossRefGoogle Scholar
  107. 107.
    Ediriwickrema LS et al (2017) Decellularization of porcine and primate optic nerve lamina towards cell culture with neural progenitor cells. Invest Ophthalmol Vis Sci 58(8):2. ISSN 0146–0404. Disponível em: < <Go to ISI>://WOS:000432176300317 >Google Scholar
  108. 108.
    Vatankhah E et al (2014) Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomater 10(2):709–721. ISSN 1742–7061. Disponível em: < <Go to ISI>://WOS:000330921700015 >CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Zhu W et al (2017) 3D printing scaffold coupled with low level light therapy for neural tissue regeneration. Biofabrication 9(2):10. ISSN 1758–5082. Disponível em: < <Go to ISI>://WOS:000399408400002 >CrossRefGoogle Scholar
  110. 110.
    Miguel SP et al (2014) Thermoresponsive chitosan-agarose hydrogel for skin regeneration. Carbohydr Polym 111:366–373. ISSN 0144–8617. Disponível em: < <Go to ISI>://WOS:000340302100042 >CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Gautam S et al (2014) Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Mater Sci Eng C Mater Biol Appl 34:402–409. ISSN 0928–4931. Disponível em: < <Go to ISI>://WOS:000330489500050 >CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Bhardwaj N et al (2015) Silk fibroin-keratin based 3D scaffolds as a dermal substitute for skin tissue engineering. Integr Biol 7(1):53–63. ISSN 1757–9694. Disponível em: < <Go to ISI>://WOS:000347724900005 >CrossRefGoogle Scholar
  113. 113.
    Cubo N et al (2017) 3D bioprinting of functional human skin: production and in vivo analysis. Biofabrication 9(1):12. ISSN 1758–5082. Disponível em: < <Go to ISI>://WOS:000390344900004 >Google Scholar
  114. 114.
    Farrokhi A et al (2018) Evaluation of detergent-free and detergent-based methods for decellularization of murine skin. Tissue Eng Part A 24(11–12):955–967. ISSN 1937–3341. Disponível em: < <Go to ISI>://WOS:000430057100001 >CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Du C et al (2014) Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering. Biomaterials 35(23):6006–6014. ISSN 0142–9612. Disponível em: < <Go to ISI>://WOS:000337212200003 >CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Zhu MF et al (2014) Fabrication of highly interconnected porous silk fibroin scaffolds for potential use as vascular grafts. Acta Biomater 10(5):2014–2023. ISSN 1742–7061. Disponível em: < <Go to ISI>://WOS:000335095300023 >CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Lih E et al (2016) Biomimetic porous PLGA scaffolds incorporating decellularized extracellular matrix for kidney tissue regeneration. ACS Appl Mater Interf 8(33):21145–21154. ISSN 1944–8244. Disponível em: < <Go to ISI>://WOS:000382179400004 >CrossRefGoogle Scholar
  118. 118.
    Xu HX et al (2014) Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials 35(1):225–235. ISSN 0142–9612. Disponível em: < <Go to ISI>://WOS:000328006100022 >CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Simon CG et al (2015) ASTM international workshop on standards and measurements for tissue engineering scaffolds. J Biomed Mater Res B Appl Biomater 103(5):949–959. ISSN 1552–4973. Disponível em: < <Go to ISI>://WOS:000356671800001 >CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng B Rev 19(6):485–502. ISSN 1937–3368. Disponível em: < <Go to ISI>://WOS:000326962100003 >CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andréa Arruda Martins Shimojo
    • 1
  • Isabella Caroline Pereira Rodrigues
    • 1
  • Amanda Gomes Marcelino Perez
    • 2
  • Eliana Maria Barbosa Souto
    • 3
  • Laís Pellizzer Gabriel
    • 1
    Email author
  • Thomas Webster
    • 4
  1. 1.School of Applied SciencesUniversity of CampinasLimeiraBrazil
  2. 2.School of Chemical EngineeringUniversity of CampinasCampinasBrazil
  3. 3.Department of Pharmaceutical Technology, Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
  4. 4.Department of Chemical EngineeringNortheastern UniversityBostonUSA

Personalised recommendations