Advances in Tissue Engineering and Regeneration

  • Krishanu Ghosal
  • Priyatosh Sarkar
  • Rima Saha
  • Santanu Ghosh
  • Kishor SarkarEmail author


Despite the advancement of medical research, damaged tissue through life threatening diseases or severe trauma or accident cannot be regenerated by the body itself due to large defect sizes or totally damaged tissue. Over the last few decades, tissue engineering (TE) has provided a revolutionary change in the biomedical field by which damaged tissues can be regenerated. Although, the regeneration is dependent on various factors such as the types of materials to be used as scaffolds, source of cells, and its stimulating factors (including growth factors, genes, or physical stimulus). In this chapter, we describe all parameters in detail for the success of tissue regeneration and we also cover all of the different types of tissue regeneration (such as bone, cartilage, neural, skin, cardiac, vascular, liver, and interfacial tissue).


Tissue engineering Regenerative medicine Polymeric scaffold 3D scaffold Bone tissue engineering Biocompatible Biodegradable Stem cell Growth factor 



This work was financially supported by the DST-SERB funding agency through two sanctioned projects EEQ/2016/000712 and ECR/2016/002018. K.S. also acknowledges UGC for a UGC-BSR Research Start-Up Grant (F.30-363/2017(BSR), Dt- 08/08/2017) and CU for a UPE-II Nanofabrication project fund (UGC/166/UPE-II, Dt- 03/04/2017) for financial support.


  1. 1.
    Bernstein HS, Srivastava D (2012) Stem cell therapy for cardiac disease. Pediatr Res 71(4-2):491CrossRefGoogle Scholar
  2. 2.
    Naderi H, Matin MM, Bahrami AR (2011) Critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems. J Biomater Appl 26(4):383–417CrossRefGoogle Scholar
  3. 3.
    Clifford DM, Fisher SA, Brunskill SJ, Doree C, Mathur A, Clarke MJ, Watt SM, Martin-Rendon E (2012) Long-term effects of autologous bone marrow stem cell treatment in acute myocardial infarction: factors that may influence outcomes. PLoS One 7(5):e37373CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Qayyum AA, Haack-Sørensen M, Mathiasen AB, Jørgensen E, Ekblond A, Kastrup J (2012) Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial): study design. Regen Med 7(3):421–428CrossRefGoogle Scholar
  5. 5.
    Weber B, Zeisberger S, Hoerstrup S (2011) Prenatally harvested cells for cardiovascular tissue engineering: fabrication of autologous implants prior to birth. Placenta 32:S316–S319CrossRefGoogle Scholar
  6. 6.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676CrossRefGoogle Scholar
  7. 7.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhu Z, Huangfu D (2013) Human pluripotent stem cells: an emerging model in developmental biology. Development 140(4):705–717CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nishikawa S-i, Goldstein RA, Nierras CR (2008) The promise of human induced pluripotent stem cells for research and therapy. Nat Rev Mol Cell Biol 9:725CrossRefGoogle Scholar
  10. 10.
    Dzau VJ, Gnecchi M, Pachori AS (2005) Enhancing stem cell therapy through genetic modification. J Am Coll Cardiol 46(7):1351–1353CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mastri M, Lin H, Lee T (2014) Enhancing the efficacy of mesenchymal stem cell therapy. World J Stem Cells 6(2):82–93CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Brochhausen C, Lehmann M, Halstenberg S, Meurer A, Klaus G, Kirkpatrick CJ (2009) Signalling molecules and growth factors for tissue engineering of cartilage—what can we learn from the growth plate? J Tissue Eng Regen Med 3(6):416–429CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mieszawska AJ, Kaplan DL (2010) Smart biomaterials - regulating cell behavior through signaling molecules. BMC Biol 8(1):59CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cushnie EK, Ulery BD, Nelson SJ, Deng M, Sethuraman S, Doty SB, Lo KWH, Khan YM, Laurencin CT (2014) Simple signaling molecules for inductive bone regenerative engineering. PLoS One 9(7):e101627CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Agrawal CM (1998) Reconstructing the human body using biomaterials. JOM 50(1):31–35CrossRefGoogle Scholar
  16. 16.
    Auler ME, Morreira D, Rodrigues FFO, Abr Ão MS, Margarido PFR, Matsumoto FE, Silva EG, Silva BCM, Schneider RP, Paula CR (2010) Biofilm formation on intrauterine devices in patients with recurrent vulvovaginal candidiasis. Med Mycol 48(1):211–216CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gallo J, Holinka M, Moucha CS (2014) Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci 15(8):13849CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lazar V (2011) Quorum sensing in biofilms—how to destroy the bacterial citadels or their cohesion/power? Anaerobe 17(6):280–285CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Green M (2006) Biofilms, Infection, and Antimicrobial Therapy Edited by John L. Pace, Mark E. Rupp, and Roger G. Finch Boca Raton, FL: CRC Press, Taylor and Francis Group, 2006 512 pp., illustrated. $159.95 (cloth). Clin Infect Dis 43(12):1623–1623CrossRefGoogle Scholar
  20. 20.
    Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Laurencin CT, Ambrosio A, Borden M, Cooper J Jr (1999) Tissue engineering: orthopedic applications. Annu Rev Biomed Eng 1(1):19–46CrossRefGoogle Scholar
  22. 22.
    Laurencin C, Khan Y, El-Amin SF (2006) Bone graft substitutes. Expert Rev Med Devices 3(1):49–57CrossRefGoogle Scholar
  23. 23.
    Nukavarapu S, Wallace J, Elgendy H, Lieberman J, Laurencin C (2011) An introduction to biomaterials and their applications. Bone Biomater 2:571–593Google Scholar
  24. 24.
    Banwart JC, Asher MA, Hassanein RS (1995) Iliac crest bone graft harvest donor site morbidity. A statistical evaluation. Spine 20(9):1055–1060CrossRefGoogle Scholar
  25. 25.
    Ebraheim NA, Elgafy H, Xu R (2001) Bone-graft harvesting from iliac and fibular donor sites: techniques and complications. JAAOS 9(3):210–218PubMedGoogle Scholar
  26. 26.
    St TJ, Vaccaro AR, Sah AP, Schaefer M, Berta SC, Albert T, Hilibrand A (2003) Physical and monetary costs associated with autogenous bone graft harvesting. Am J Orthop 32(1):18–23Google Scholar
  27. 27.
    Delloye C, Cornu O, Druez V, Barbier O (2007) Bone allografts: what they can offer and what they cannot. J Bone Joint Surg 89(5):574–580CrossRefGoogle Scholar
  28. 28.
    Lord C, Gebhardt M, Tomford W, Mankin H (1988) Infection in bone allografts. Incidence, nature, and treatment. J Bone Joint Surg Am 70(3):369–376CrossRefGoogle Scholar
  29. 29.
    Tomford W, Starkweather R, Goldman M (1981) A study of the clinical incidence of infection in the use of banked allograft bone. J Bone Joint Surg Am 63(2):244–248CrossRefGoogle Scholar
  30. 30.
    Liu H, Peng H, Wu Y, Zhang C, Cai Y, Xu G, Li Q, Chen X, Ji J, Zhang Y, OuYang HW (2013) The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials 34(18):4404–4417CrossRefGoogle Scholar
  31. 31.
    Xu Z-L, Lei Y, Yin W-J, Chen Y-X, Ke Q-F, Guo Y-P, Zhang C-Q (2016) Enhanced antibacterial activity and osteoinductivity of Ag-loaded strontium hydroxyapatite/chitosan porous scaffolds for bone tissue engineering. J Mater Chem B 4(48):7919–7928CrossRefGoogle Scholar
  32. 32.
    Saravanan S, Nethala S, Pattnaik S, Tripathi A, Moorthi A, Selvamurugan N (2011) Preparation, characterization and antimicrobial activity of a bio-composite scaffold containing chitosan/nano-hydroxyapatite/nano-silver for bone tissue engineering. Int J Biol Macromol 49(2):188–193CrossRefGoogle Scholar
  33. 33.
    Qiao P, Wang J, Xie Q, Li F, Dong L, Xu T (2013) Injectable calcium phosphate–alginate–chitosan microencapsulated MC3T3-E1 cell paste for bone tissue engineering in vivo. Mater Sci Eng C 33(8):4633–4639CrossRefGoogle Scholar
  34. 34.
    Wang L, Shelton R, Cooper P, Lawson M, Triffitt J, Barralet J (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24(20):3475–3481CrossRefGoogle Scholar
  35. 35.
    Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32(1):65–74CrossRefGoogle Scholar
  36. 36.
    Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221(1-2):1–22CrossRefGoogle Scholar
  37. 37.
    Weinberg CB, Bell E (1986) A blood vessel model constructed from collagen and cultured vascular cells. Science 231(4736):397–400CrossRefGoogle Scholar
  38. 38.
    Freyman T, Yannas I, Gibson L (2001) Cellular materials as porous scaffolds for tissue engineering. Progr Mater Sci 46(3-4):273–282CrossRefGoogle Scholar
  39. 39.
    O’Brien FJ, Harley BA, Yannas IV, Gibson LJ (2005) The effect of pore size on cell adhesion in collagen-GAG scaffolds. Biomaterials 26(4):433–441CrossRefGoogle Scholar
  40. 40.
    Angele P, Abke J, Kujat R, Faltermeier H, Schumann D, Nerlich M, Kinner B, Englert C, Ruszczak Z, Mehrl R (2004) Influence of different collagen species on physico-chemical properties of crosslinked collagen matrices. Biomaterials 25(14):2831–2841CrossRefGoogle Scholar
  41. 41.
    Chen L, Wu Z, Zhou Y, Li L, Wang Y, Wang Z, Chen Y, Zhang P (2017) Biomimetic porous collagen/hydroxyapatite scaffold for bone tissue engineering. J Appl Polym Sci 134(37):45271CrossRefGoogle Scholar
  42. 42.
    Panilaitis B, Altman GH, Chen J, Jin H-J, Karageorgiou V, Kaplan DL (2003) Macrophage responses to silk. Biomaterials 24(18):3079–3085CrossRefGoogle Scholar
  43. 43.
    Jin H-J, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424(6952):1057CrossRefGoogle Scholar
  44. 44.
    Kim HJ, Kim U-J, Kim HS, Li C, Wada M, Leisk GG, Kaplan DL (2008) Bone tissue engineering with premineralized silk scaffolds. Bone 42(6):1226–1234CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mandal BB, Grinberg A, Seok Gil E, Panilaitis B, Kaplan DL (2012) High-strength silk protein scaffolds for bone repair. Proc Natl Acad Sci 109(20):7699–7704CrossRefGoogle Scholar
  46. 46.
    Shao W, He J, Sang F, Ding B, Chen L, Cui S, Li K, Han Q, Tan W (2016) Coaxial electrospun aligned tussah silk fibroin nanostructured fiber scaffolds embedded with hydroxyapatite–tussah silk fibroin nanoparticles for bone tissue engineering. Mater Sci Eng C 58:342–351CrossRefGoogle Scholar
  47. 47.
    Sarkar K, Meka SRK, Bagchi A, Krishna N, Ramachandra S, Madras G, Chatterjee K (2014) Polyester derived from recycled poly (ethylene terephthalate) waste for regenerative medicine. RSC Adv 4(102):58805–58815CrossRefGoogle Scholar
  48. 48.
    Kolanthai E, Sarkar K, Meka SRK, Madras G, Chatterjee K (2015) Copolyesters from soybean oil for use as resorbable biomaterials. ACS Sustain Chem Eng 3(5):880–891CrossRefGoogle Scholar
  49. 49.
    Florczyk SJ, Leung M, Li Z, Huang JI, Hopper RA, Zhang M (2013) Evaluation of three-dimensional porous chitosan–alginate scaffolds in rat calvarial defects for bone regeneration applications. J Biomed Mater Res A 101(10):2974–2983CrossRefGoogle Scholar
  50. 50.
    Jin H-H, Kim D-H, Kim T-W, Shin K-K, Jung JS, Park H-C, Yoon S-Y (2012) In vivo evaluation of porous hydroxyapatite/chitosan–alginate composite scaffolds for bone tissue engineering. Int J Biol Macromol 51(5):1079–1085CrossRefGoogle Scholar
  51. 51.
    Costa-Pinto AR, Correlo VM, Sol PC, Bhattacharya M, Srouji S, Livne E, Reis RL, Neves NM (2012) Chitosan–poly(butylene succinate) scaffolds and human bone marrow stromal cells induce bone repair in a mouse calvaria model. J Tissue Eng Regen Med 6(1):21–28CrossRefGoogle Scholar
  52. 52.
    Niu X, Fan Y, Liu X, Li X, Li P, Wang J, Sha Z, Feng Q (2011) Repair of bone defect in femoral condyle using microencapsulated chitosan, nanohydroxyapatite/collagen and poly(L-lactide)-based microsphere-scaffold delivery system. Artif Organs 35(7):E119–E128CrossRefGoogle Scholar
  53. 53.
    Shi S, Cheng X, Wang J, Zhang W, Peng L, Zhang Y (2009) RhBMP-2 microspheres-loaded chitosan/collagen scaffold enhanced osseointegration: an experiment in dog. J Biomater Appl 23(4):331–346CrossRefGoogle Scholar
  54. 54.
    Haberstroh K, Ritter K, Kuschnierz J, Bormann K-H, Kaps C, Carvalho C, Mülhaupt R, Sittinger M, Gellrich N-C (2010) Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects. J Biomed Mater Res B Appl Biomater 93B(2):520–530CrossRefGoogle Scholar
  55. 55.
    Planka L, Necas A, Srnec R, Rauser P, Stary D, Jancar J, Amler E, Filova E, Hlucilova J, Kren L, Gal P (2009) Use of allogenic stem cells for the prevention of bone bridge formation in miniature pigs. Physiol Res 58(6):885–893PubMedGoogle Scholar
  56. 56.
    Muzzarelli RAA, Biagini G, Bellardini M, Simonelli L, Castaldini C, Fratto G (1993) Osteoconduction exerted by methylpyrrolidinone chitosan used in dental surgery. Biomaterials 14(1):39–43CrossRefGoogle Scholar
  57. 57.
    Ji QX, Deng J, Xing XM, Yuan CQ, Yu XB, Xu QC, Yue J (2010) Biocompatibility of a chitosan-based injectable thermosensitive hydrogel and its effects on dog periodontal tissue regeneration. Carbohydr Polym 82(4):1153–1160CrossRefGoogle Scholar
  58. 58.
    Cao L, Werkmeister JA, Wang J, Glattauer V, McLean KM, Liu C (2014) Bone regeneration using photocrosslinked hydrogel incorporating rhBMP-2 loaded 2-N, 6-O-sulfated chitosan nanoparticles. Biomaterials 35(9):2730–2742CrossRefGoogle Scholar
  59. 59.
    Abbah S-A, Liu J, Lam RWM, Goh JCH, Wong H-K (2012) In vivo bioactivity of rhBMP-2 delivered with novel polyelectrolyte complexation shells assembled on an alginate microbead core template. J Control Release 162(2):364–372CrossRefGoogle Scholar
  60. 60.
    Lee G-S, Park J-H, Shin US, Kim H-W (2011) Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering. Acta Biomater 7(8):3178–3186CrossRefGoogle Scholar
  61. 61.
    Soumya S, Sajesh KM, Jayakumar R, Nair SV, Chennazhi KP (2012) Development of a phytochemical scaffold for bone tissue engineering using Cissus quadrangularis extract. Carbohydr Polym 87(2):1787–1795CrossRefGoogle Scholar
  62. 62.
    Kim M, Jung W-K, Kim G (2013) Bio-composites composed of a solid free-form fabricated polycaprolactone and alginate-releasing bone morphogenic protein and bone formation peptide for bone tissue regeneration. Bioprocess Biosyst Eng 36(11):1725–1734CrossRefGoogle Scholar
  63. 63.
    Park D-J, Choi B-H, Zhu S-J, Huh J-Y, Kim B-Y, Lee S-H (2005) Injectable bone using chitosan-alginate gel/mesenchymal stem cells/BMP-2 composites. J Craniomaxillofac Surg 33(1):50–54CrossRefGoogle Scholar
  64. 64.
    Wang Y, Peng W, Liu X, Zhu M, Sun T, Peng Q, Zeng Y, Feng B, Zhi W, Weng J, Wang J (2014) Study of bilineage differentiation of human-bone-marrow-derived mesenchymal stem cells in oxidized sodium alginate/N-succinyl chitosan hydrogels and synergistic effects of RGD modification and low-intensity pulsed ultrasound. Acta Biomater 10(6):2518–2528CrossRefGoogle Scholar
  65. 65.
    Grellier M, Granja PL, Fricain J-C, Bidarra SJ, Renard M, Bareille R, Bourget C, Amédée J, Barbosa MA (2009) The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect. Biomaterials 30(19):3271–3278CrossRefGoogle Scholar
  66. 66.
    Chen G, Lv Y, Dong C, Yang L (2015) Effect of internal structure of collagen/hydroxyapatite scaffold on the osteogenic differentiation of mesenchymal stem cells. Curr Stem Cell Res Ther 10(2):99–108CrossRefGoogle Scholar
  67. 67.
    Chen G, Dong C, Yang L, Lv Y (2015) 3D scaffolds with different stiffness but the same microstructure for bone tissue engineering. ACS Appl Mater Interfaces 7(29):15790–15802CrossRefGoogle Scholar
  68. 68.
    Chen G, Yang L, Lv Y (2016) Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model. J Biomed Mater Res A 104(4):833–841CrossRefGoogle Scholar
  69. 69.
    Taguchi Y, Amizuka N, Nakadate M, Ohnishi H, Fujii N, Oda K, Nomura S, Maeda T (2005) A histological evaluation for guided bone regeneration induced by a collagenous membrane. Biomaterials 26(31):6158–6166CrossRefGoogle Scholar
  70. 70.
    Zerwekh JE, Kourosh S, Scheinberg R, Kitano T, Edwards ML, Shin D, Selby DK (1992) Fibrillar collagen-biphasic calcium phosphate composite as a bone graft substitute for spinal fusion. J Orthop Res 10(4):562–572CrossRefGoogle Scholar
  71. 71.
    Takahashi Y, Yamamoto M, Tabata Y (2005) Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and β-tricalcium phosphate. Biomaterials 26(23):4856–4865CrossRefGoogle Scholar
  72. 72.
    Kim H-W, Song J-H, Kim H-E (2006) Bioactive glass nanofiber–collagen nanocomposite as a novel bone regeneration matrix. J Biomed Mater Res A 79A(3):698–705CrossRefGoogle Scholar
  73. 73.
    Muthukumar T, Aravinthan A, Sharmila J, Kim NS, Kim J-H (2016) Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K. Carbohydr Polym 152:566–574CrossRefGoogle Scholar
  74. 74.
    Alt V, Kögelmaier DV, Lips KS, Witt V, Pacholke S, Heiss C, Kampschulte M, Heinemann S, Hanke T, Schnettler R, Langheinrich AC (2011) Assessment of angiogenesis in osseointegration of a silica–collagen biomaterial using 3D-nano-CT. Acta Biomater 7(10):3773–3779CrossRefGoogle Scholar
  75. 75.
    Lee E-J, Jun S-H, Kim H-E, Koh Y-H (2012) Collagen–silica xerogel nanohybrid membrane for guided bone regeneration. J Biomed Mater Res A 100A(4):841–847CrossRefGoogle Scholar
  76. 76.
    Wang S, Yang Y, Zhao Z, Wang X, Mikos AG, Qiu Z, Song T, Sun X, Zhao L, Zhang C, Cui F (2017) Mineralized collagen-based composite bone materials for cranial bone regeneration in developing sheep. ACS Biomater Sci Eng 3(6):1092–1099CrossRefGoogle Scholar
  77. 77.
    Cui F, Wang S, Wang X, Yang Y, Zhao Z, Zhang C, Mikos AG, Song T, Qiu Z (2018) A high-strength mineralized collagen bone scaffold for large-sized cranial bone defect repair in sheep. Regener Biomater 5(5):283–292CrossRefGoogle Scholar
  78. 78.
    Fini M, Motta A, Torricelli P, Giavaresi G, Nicoli Aldini N, Tschon M, Giardino R, Migliaresi C (2005) The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel. Biomaterials 26(17):3527–3536CrossRefGoogle Scholar
  79. 79.
    Zhang W, Wang X, Wang S, Zhao J, Xu L, Zhu C, Zeng D, Chen J, Zhang Z, Kaplan DL, Jiang X (2011) The use of injectable sonication-induced silk hydrogel for VEGF165 and BMP-2 delivery for elevation of the maxillary sinus floor. Biomaterials 32(35):9415–9424CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Correia C, Bhumiratana S, Yan L-P, Oliveira AL, Gimble JM, Rockwood D, Kaplan DL, Sousa RA, Reis RL, Vunjak-Novakovic G (2012) Development of silk-based scaffolds for tissue engineering of bone from human adipose-derived stem cells. Acta Biomater 8(7):2483–2492CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Uebersax L, Apfel T, Nuss KMR, Vogt R, Kim HY, Meinel L, Kaplan DL, Auer JA, Merkle HP, von Rechenberg B (2013) Biocompatibility and osteoconduction of macroporous silk fibroin implants in cortical defects in sheep. Eur J Pharm Biopharm 85(1):107–118CrossRefGoogle Scholar
  82. 82.
    Nagano A, Tanioka Y, Sakurai N, Sezutsu H, Kuboyama N, Kiba H, Tanimoto Y, Nishiyama N, Asakura T (2011) Regeneration of the femoral epicondyle on calcium-binding silk scaffolds developed using transgenic silk fibroin produced by transgenic silkworm. Acta Biomater 7(3):1192–1201CrossRefGoogle Scholar
  83. 83.
    Park SY, Ki CS, Park YH, Jung HM, Woo KM, Kim HJ (2010) Electrospun silk fibroin scaffolds with macropores for bone regeneration: an in vitro and in vivo study. Tissue Eng Part A 16(4):1271–1279CrossRefGoogle Scholar
  84. 84.
    Meinel L, Betz O, Fajardo R, Hofmann S, Nazarian A, Cory E, Hilbe M, McCool J, Langer R, Vunjak-Novakovic G, Merkle HP, Rechenberg B, Kaplan DL, Kirker-Head C (2006) Silk based biomaterials to heal critical sized femur defects. Bone 39(4):922–931CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Sun L, Parker ST, Syoji D, Wang X, Lewis JA, Kaplan DL (2012) Direct-write assembly of 3D silk/hydroxyapatite scaffolds for bone co-cultures. Adv Healthc Mater 1(6):729–735CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Jiang X, Zhao J, Wang S, Sun X, Zhang X, Chen J, Kaplan DL, Zhang Z (2009) Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs. Biomaterials 30(27):4522–4532CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Wu C, Zhang Y, Zhou Y, Fan W, Xiao Y (2011) A comparative study of mesoporous glass/silk and non-mesoporous glass/silk scaffolds: physiochemistry and in vivo osteogenesis. Acta Biomater 7(5):2229–2236CrossRefGoogle Scholar
  88. 88.
    Choong C, Triffitt JT, Cui ZF (2004) Polycaprolactone scaffolds for bone tissue engineering: effects of a calcium phosphate coating layer on osteogenic cells. Food Bioprod Process 82(2):117–125CrossRefGoogle Scholar
  89. 89.
    Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827CrossRefGoogle Scholar
  90. 90.
    Park SA, Lee H-J, Kim K-S, Lee SJ, Lee J-T, Kim S-Y, Chang N-H, Park S-Y (2018) In vivo evaluation of 3D-printed polycaprolactone scaffold implantation combined with β-TCP powder for alveolar bone augmentation in a beagle defect model. Materials 11(2):238CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Nguyen T-H, Lee B-T (2013) In vitro and in vivo studies of rhBMP2-coated PS/PCL fibrous scaffolds for bone regeneration. J Biomed Mater Res A 101A(3):797–808CrossRefGoogle Scholar
  92. 92.
    Pati F, Song T-H, Rijal G, Jang J, Kim SW, Cho D-W (2015) Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration. Biomaterials 37:230–241CrossRefGoogle Scholar
  93. 93.
    Zhang ZZ, Zhang HZ, Zhang ZY (2019) 3D printed poly (ε-caprolactone) scaffolds function with simvastatin-loaded poly (lactic-co-glycolic acid) microspheres to repair load-bearing segmental bone defects. Exp Ther Med 17(1):79–90PubMedGoogle Scholar
  94. 94.
    Li M, Liu W, Sun J, Xianyu Y, Wang J, Zhang W, Zheng W, Huang D, Di S, Long Y-Z, Jiang X (2013) Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering. ACS Appl Mater Interfaces 5(13):5921–5926CrossRefGoogle Scholar
  95. 95.
    Wu X, Zheng S, Ye Y, Wu Y, Lin K, Su J (2018) Enhanced osteogenic differentiation and bone regeneration of poly(lactic-co-glycolic acid) by graphene via activation of PI3K/Akt/GSK-3β/β-catenin signal circuit. Biomater Sci 6(5):1147–1158CrossRefGoogle Scholar
  96. 96.
    Eslami H, Azimi Lisar H, Jafarzadeh Kashi TS, Tahriri M, Ansari M, Rafiei T, Bastami F, Shahin-Shamsabadi A, Mashhadi Abbas F, Tayebi L (2018) Poly(lactic-co-glycolic acid)(PLGA)/TiO2 nanotube bioactive composite as a novel scaffold for bone tissue engineering: In vitro and in vivo studies. Biologicals 53:51–62CrossRefGoogle Scholar
  97. 97.
    Chen C, Wang H, Zhu G, Sun Z, Xu X, Li F, Luo S (2018) Three-dimensional poly lactic-co-glycolic acid scaffold containing autologous platelet-rich plasma supports keloid fibroblast growth and contributes to keloid formation in a nude mouse model. J Dermatol Sci 89(1):67–76CrossRefGoogle Scholar
  98. 98.
    Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/β-TCP for bone tissue engineering. Bone 46(2):386–395CrossRefGoogle Scholar
  99. 99.
    Ortiz M, Escobar-Garcia DM, Álvarez-Pérez MA, Pozos-Guillén A, Grandfils C, Flores H (2017) Evaluation of the osteoblast behavior to PGA textile functionalized with RGD as a scaffold for bone regeneration. J Nanomater 2017:4852190CrossRefGoogle Scholar
  100. 100.
    Teixeira BN, Aprile P, Mendonça RH, Kelly DJ, Thiré RM (2019) Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen. J Biomed Mater Res B Appl Biomater 107(1):37–49CrossRefGoogle Scholar
  101. 101.
    Zhang H, Mao X, Zhao D, Jiang W, Du Z, Li Q, Jiang C, Han D (2017) Three dimensional printed polylactic acid-hydroxyapatite composite scaffolds for prefabricating vascularized tissue engineered bone: an in vivo bioreactor model. Sci Rep 7(1):15255CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Apalangya VA, Rangari VK, Tiimob BJ, Jeelani S, Samuel T (2019) Eggshell based nano-engineered hydroxyapatite and poly (lactic) acid electrospun fibers as potential tissue scaffold. Int J Biomater 2019:6762575CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Seyednejad H, Gawlitta D, Dhert WJ, Van Nostrum CF, Vermonden T, Hennink WE (2011) Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Acta Biomater 7(5):1999–2006CrossRefGoogle Scholar
  104. 104.
    Natarajan J, Madras G, Chatterjee K (2017) Development of graphene oxide-/galactitol polyester-based biodegradable composites for biomedical applications. ACS Omega 2(9):5545–5556CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Natarajan J, Movva S, Madras G, Chatterjee K (2017) Biodegradable galactitol based crosslinked polyesters for controlled release and bone tissue engineering. Mater Sci Eng C 77:534–547CrossRefGoogle Scholar
  106. 106.
    Cui H, Liu Y, Deng M, Pang X, Zhang P, Wang X, Chen X, Wei Y (2012) Synthesis of biodegradable and electroactive tetraaniline grafted poly (ester amide) copolymers for bone tissue engineering. Biomacromolecules 13(9):2881–2889CrossRefGoogle Scholar
  107. 107.
    Natarajan J, Dasgupta Q, Shetty SN, Sarkar K, Madras G, Chatterjee K (2016) Poly (ester amide) s from soybean oil for modulated release and bone regeneration. ACS Appl Mater Interfaces 8(38):25170–25184CrossRefGoogle Scholar
  108. 108.
    Wang Y-J, Jeng U-S (2018) Hsu, S.-h., Biodegradable water-based polyurethane shape memory elastomers for bone tissue engineering. ACS Biomater Sci Eng 4(4):1397–1406CrossRefGoogle Scholar
  109. 109.
    Gerges I, Tamplenizza M, Lopa S, Recordati C, Martello F, Tocchio A, Ricotti L, Arrigoni C, Milani P, Moretti M (2016) Creep-resistant dextran-based polyurethane foam as a candidate scaffold for bone tissue engineering: Synthesis, chemico-physical characterization, and in vitro and in vivo biocompatibility. Int J Polym Mater Polym Biomater 65(14):729–740CrossRefGoogle Scholar
  110. 110.
    Pneumaticos SG, Triantafyllopoulos GK, Basdra EK, Papavassiliou AG (2010) Segmental bone defects: from cellular and molecular pathways to the development of novel biological treatments. J Cell Mol Med 14(11):2561–2569CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Black CR, Goriainov V, Gibbs D, Kanczler J, Tare RS, Oreffo RO (2015) Bone tissue engineering. Curr Mol Biol Rep 1(3):132–140CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Roddy E, DeBaun MR, Daoud-Gray A, Yang YP, Gardner MJ (2018) Treatment of critical-sized bone defects: clinical and tissue engineering perspectives. Eur J Orthop Surg Traumatol 28(3):351–362CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF, Zych GA, Calhoun JH, LaForte AJ, Yin S (2001) Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions: a prospective, randomized clinical trial comparing rhOP-1 with fresh bone autograft. The. J Bone Joint Surg 83(Pt 2):S151PubMedPubMedCentralGoogle Scholar
  114. 114.
    Govender S, Csimma C, Genant HK, Valentin-Opran A (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. JBJS 84(12):2123–2134CrossRefGoogle Scholar
  115. 115.
    Chrastil J, Low JB, Whang PG, Patel AA (2013) Complications associated with the use of the recombinant human bone morphogenetic proteins for posterior interbody fusions of the lumbar spine. Spine 38(16):E1020–E1027CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Aro HT, Govender S, Patel AD, Hernigou P, de Gregorio AP, Popescu GI, Golden JD, Christensen J, Valentin A (2011) Recombinant human bone morphogenetic protein-2: a randomized trial in open tibial fractures treated with reamed nail fixation. JBJS 93(9):801–808CrossRefGoogle Scholar
  117. 117.
    Yamada T, Yoshii T, Sotome S, Yuasa M, Kato T, Arai Y, Kawabata S, Tomizawa S, Sakaki K, Hirai T (2012) Hybrid grafting using bone marrow aspirate combined with porous β-tricalcium phosphate and trephine bone for lumbar posterolateral spinal fusion: a prospective, comparative study versus local bone grafting. Spine 37(3):E174–E179CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Russell TA, Leighton RK (2008) Comparison of autogenous bone graft and endothermic calcium phosphate cement for defect augmentation in tibial plateau fractures: a multicenter, prospective, randomized study. JBJS 90(10):2057–2061CrossRefGoogle Scholar
  119. 119.
    Damron TA, Lisle J, Craig T, Wade M, Silbert W, Cohen H (2013) Ultraporous β-tricalcium phosphate alone or combined with bone marrow aspirate for benign cavitary lesions: comparison in a prospective randomized clinical trial. JBJS 95(2):158–166CrossRefGoogle Scholar
  120. 120.
    Karger C, Kishi T, Schneider L, Fitoussi F, Masquelet A-C (2012) Treatment of posttraumatic bone defects by the induced membrane technique. Orthop Traumatol Surg Res 98(1):97–102CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Meinig RP (2010) Clinical use of resorbable polymeric membranes in the treatment of bone defects. Orthoped Clin 41(1):39–47Google Scholar
  122. 122.
    Jones AL, Bucholz RW, Bosse MJ, Mirza SK, Lyon TR, Webb LX, Pollak AN, Golden JD, Valentin-Opran A (2006) Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects: a randomized, controlled trial. JBJS 88(7):1431–1441CrossRefGoogle Scholar
  123. 123.
    Reichert JC, Cipitria A, Epari DR, Saifzadeh S, Krishnakanth P, Berner A, Woodruff MA, Schell H, Mehta M, Schuetz MA (2012) A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci Transl Med 4(141):141ra93–141ra93CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Ren L, Kang Y, Browne C, Bishop J, Yang Y (2014) Fabrication, vascularization and osteogenic properties of a novel synthetic biomimetic induced membrane for the treatment of large bone defects. Bone 64:173–182CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Berner A, Henkel J, Woodruff MA, Steck R, Nerlich M, Schuetz MA, Hutmacher DW (2015) Delayed minimally invasive injection of allogenic bone marrow stromal cell sheets regenerates large bone defects in an ovine preclinical animal model. Stem Cells Transl Med 4(5):503–512CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Cameron SH, Alwakeel AJ, Goddard L, Hobbs CE, Gowing EK, Barnett ER, Kohe SE, Sizemore RJ, Oorschot DE (2015) Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia–ischemia. Mol Cell Neurosci 68:56–72CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Dreger T, Watson JT, Walter Akers D, Molligan J, Achilefu S, Schon LC, Zhang Z (2014) Intravenous application of CD271-selected mesenchymal stem cells during fracture healing. J Orthop Trauma 28(1):S15CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Ghosal K, Khanna R, Sarkar K (2018) Biopolymer based interfacial tissue engineering for arthritis. In: Orthopedic biomaterials. Springer, Berlin, pp 67–88CrossRefGoogle Scholar
  130. 130.
    Perera J, Gikas P, Bentley G (2012) The present state of treatments for articular cartilage defects in the knee. Ann R Coll Surg Engl 94(6):381–387CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Verhaegen J, Clockaerts S, Van Osch G, Somville J, Verdonk P, Mertens P (2015) TruFit plug for repair of osteochondral defects—where is the evidence? Systematic review of literature. Cartilage 6(1):12–19CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Cole BJ, Farr J, Winalski C, Hosea T, Richmond J, Mandelbaum B, De Deyne PG (2011) Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med 39(6):1170–1179CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Gibbs DM, Vaezi M, Yang S, Oreffo RO (2014) Hope versus hype: what can additive manufacturing realistically offer trauma and orthopedic surgery? Regen Med 9(4):535–549CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Hunter W (1743) Of the structure and disease of articular cartilages. Philos Trans Lond 42:514–521Google Scholar
  135. 135.
    Mithoefer K, McAdams T, Williams RJ, Kreuz PC, Mandelbaum BR (2009) Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis. Am J Sports Med 37(10):2053–2063CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Athanasiou KA, Darling EM, Hu JC (2009) Articular cartilage tissue engineering. Synth Lect Tissue Eng 1(1):1–182Google Scholar
  137. 137.
    Roberts S, Menage J, Sandell L, Evans E, Richardson J (2009) Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation. Knee 16(5):398–404CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Pelttari K, Wixmerten A, Do we really need cartilage tissue engineering? Swiss Med Wkly. 2009;139(4142).Google Scholar
  139. 139.
    Green JW (1977) Articular cartilage repair. Behavior of rabbit chondrocytes during tissue culture and subsequent allografting. Clin Orthop Relat Res 124:237–250Google Scholar
  140. 140.
    Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Zhou Q, Gong Y, Gao C (2005) Microstructure and mechanical properties of poly (L-lactide) scaffolds fabricated by gelatin particle leaching method. J Appl Polym Sci 98(3):1373–1379CrossRefGoogle Scholar
  142. 142.
    He X, Kawazoe N, Chen G (2014) Preparation of cylinder-shaped porous sponges of poly (L-lactic acid), poly (DL-lactic-co-glycolic acid), and poly (-caprolactone). Biomed Res Int 2014:106082PubMedPubMedCentralGoogle Scholar
  143. 143.
    Shin HJ, Lee CH, Cho IH, Kim Y-J, Lee Y-J, Kim IA, Park K-D, Yui N, Shin J-W (2006) Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Ed 17(1-2):103–119CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Williams GM, Klein TJ, Sah RL (2005) Cell density alters matrix accumulation in two distinct fractions and the mechanical integrity of alginate–chondrocyte constructs. Acta Biomater 1(6):625–633CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Steinmeyer J, Ackermann B, Raiss RX (1997) Intermittent cyclic loading of cartilage explants modulates fibronectin metabolism. Osteoarthr Cartil 5(5):331–341CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Parkkinen J, Ikonen J, Lammi M, Laakkonen J, Tammi M, Helminen H (1993) Effects of cyclic hydrostatic pressure on proteoglycan synthesis in cultured chondrocytes and articular cartilage explants. Arch Biochem Biophys 300(1):458–465CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Hall AC (1999) Differential effects of hydrostatic pressure on cation transport pathways of isolated articular chondrocytes. J Cell Physiol 178(2):197–204CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Wu MH, Urban JP, Cui ZF, Cui Z, Xu X (2007) Effect of extracellular pH on matrix synthesis by chondrocytes in 3D agarose gel. Biotechnol Prog 23(2):430–434CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Griffon DJ, Sedighi MR, Schaeffer DV, Eurell JA, Johnson AL (2006) Chitosan scaffolds: interconnective pore size and cartilage engineering. Acta Biomater 2(3):313–320CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Lammi MJ (2007) Cellular signaling in cartilage tissue engineering. Curr Signal Transduct Ther 2(1):41–48CrossRefGoogle Scholar
  151. 151.
    Schmidt M, Chen E, Lynch S (2006) A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair. Osteoarthr Cartil 14(5):403–412CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Awad HA, Halvorsen Y-DC, Gimble JM, Guilak F (2003) Effects of transforming growth factor β 1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells. Tissue Eng 9(6):1301–1312CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Gooch K, Blunk T, Courter D, Sieminski A, Vunjak-Novakovic G, Freed L (2002) Bone morphogenetic proteins-2,-12, and-13 modulate in vitro development of engineered cartilage. Tissue Eng 8(4):591–601CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Mauck RL, Nicoll SB, Seyhan SL, Ateshian GA, Hung CT (2003) Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng 9(4):597–611CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Aigner J, Tegeler J, Hutzler P, Campoccia D, Pavesio A, Hammer C, Kastenbauer E, Naumann A (1998) Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res 42(2):172–181CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Nehrer S, Domayer S, Dorotka R, Schatz K, Bindreiter U, Kotz R (2006) Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur J Radiol 57(1):3–8CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T (2006) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng 93(6):1152–1163CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Caterson EJ, Nesti LJ, Li WJ, Danielson KG, Albert TJ, Vaccaro AR, Tuan RS (2001) Three-dimensional cartilage formation by bone marrow-derived cells seeded in polylactide/alginate amalgam. J Biomed Mater Res 57(3):394–403CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Montembault A, Tahiri K, Korwin-Zmijowska C, Chevalier X, Corvol M-T, Domard A (2006) A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering. Biochimie 88(5):551–564CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Yoo M-K, Kweon HY, Lee K-G, Lee H-C, Cho C-S (2004) Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poloxamer macromer. Int J Biol Macromol 34(4):263–270CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Kim U-J, Park J, Li C, Jin H-J, Valluzzi R, Kaplan DL (2004) Structure and properties of silk hydrogels. Biomacromolecules 5(3):786–792CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Burdick JA, Chung C, Jia X, Randolph MA, Langer R (2005) Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules 6(1):386–391CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Sahoo S, Chung C, Khetan S, Burdick JA (2008) Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures. Biomacromolecules 9(4):1088–1092CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Li Q, Williams CG, Sun DD, Wang J, Leong K, Elisseeff JH (2004) Photocrosslinkable polysaccharides based on chondroitin sulfate. J Biomed Mater Res 68(1):28–33CrossRefGoogle Scholar
  165. 165.
    Suh J-KF, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24):2589–2598CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Nehrer S, Breinan H, Ramappa A, Hsu H, Minas T, Shortkroff S, Sledge C, Yannas I, Spector M (1998) Chondrocyte-seeded collagen matrices implanted in a chondral defect in a canine model. Biomaterials 19(24):2313–2328CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Lien S-M, Li W-T, Huang T-J (2008) Genipin-crosslinked gelatin scaffolds for articular cartilage tissue engineering with a novel crosslinking method. Mater Sci Eng C 28(1):36–43CrossRefGoogle Scholar
  168. 168.
    Gründer T, Gaissmaier C, Fritz J, Stoop R, Hortschansky P, Mollenhauer J, Aicher WK (2004) Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads. Osteoarthr Cartil 12(7):559–567CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Mattioli-Belmonte M, Gigante A, Muzzarelli R, Politano R, De Benedittis A, Specchia N, Buffa A, Biagini G, Greco F (1999) N, N-dicarboxymethyl chitosan as delivery agent for bone morphogenetic protein in the repair of articular cartilage. Med Biol Eng Comput 37(1):130–134CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Kubota N, Tatsumoto N, Sano T, Toya K (2000) A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydr Res 324(4):268–274CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Muzzarelli RA, Tanfani F, Emanuelli M, Mariotti S (1982) N-(carboxymethylidene) chitosans and N-(carboxymethyl) chitosans: Novel chelating polyampholytes obtained from chitosan glyoxylate. Carbohydr Res 107(2):199–214CrossRefGoogle Scholar
  172. 172.
    Murata J-i, Ohya Y, Ouchi T (1996) Possibility of application of quaternary chitosan having pendant galactose residues as gene delivery tool. Carbohydr Polym 29(1):69–74CrossRefGoogle Scholar
  173. 173.
    Medrado GCB, Machado CB, Valerio P, Sanches MD, Goes AM (2006) The effect of a chitosan–gelatin matrix and dexamethasone on the behavior of rabbit mesenchymal stem cells. Biomed Mater 1(3):155–161CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Meinel L, Hofmann S, Karageorgiou V, Zichner L, Langer R, Kaplan D, Vunjak-Novakovic G (2004) Engineering cartilage-like tissue using human mesenchymal stem cells and silk protein scaffolds. Biotechnol Bioeng 88(3):379–391CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Yeh MK, Cheng KM, Hu CS, Huang YC, Young JJ (2011) Novel protein-loaded chondroitin sulfate–chitosan nanoparticles: preparation and characterization. Acta Biomater 7(10):3804–3812CrossRefGoogle Scholar
  176. 176.
    Jo S, Kim S, Noh I (2012) Synthesis of in situ chondroitin sulfate hydrogel through phosphine-mediated Michael type addition reaction. Macromol Res 20(9):968–976CrossRefGoogle Scholar
  177. 177.
    Nishimoto S, Takagi M, Wakitani S, Nihira T, Yoshida T (2005) Effect of chondroitin sulfate and hyaluronic acid on gene expression in a three-dimensional culture of chondrocytes. J Biosci Bioeng 100(1):123–126CrossRefGoogle Scholar
  178. 178.
    Bhardwaj T, Pilliar RM, Grynpas MD, Kandel RA (2001) Effect of material geometry on cartilagenous tissue formation in vitro. J Biomed Mater Res 57(2):190–199CrossRefGoogle Scholar
  179. 179.
    He X, Kawazoe N, Chen G (2014) Preparation of cylinder-shaped porous sponges of poly(L-lactic acid), poly(DL-lactic-co-glycolic acid), and poly(-caprolactone). Biomed Res Int 2014:8Google Scholar
  180. 180.
    Pan Z, Ding J (2012) Poly(lactide-co-glycolide) porous scaffolds for tissue engineering and regenerative medicine. Interface Focus 2(3):366–377CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Wang W, Li B, Li Y, Jiang Y, Ouyang H, Gao C (2010) In vivo restoration of full-thickness cartilage defects by poly(lactide-co-glycolide) sponges filled with fibrin gel, bone marrow mesenchymal stem cells and DNA complexes. Biomaterials 31(23):5953–5965CrossRefGoogle Scholar
  182. 182.
    Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773CrossRefGoogle Scholar
  183. 183.
    Ma PX, Choi J-W (2001) Biodegradable polymer scaffolds with well-defined interconnected spherical pore network. Tissue Eng 7(1):23–33CrossRefGoogle Scholar
  184. 184.
    Chen G, Sato T, Ushida T, Ochiai N, Tateishi T (2004) Tissue engineering of cartilage using a hybrid scaffold of synthetic polymer and collagen. Tissue Eng 10(3-4):323–330CrossRefGoogle Scholar
  185. 185.
    Richards E, Rizvi R, Chow A, Naguib H (2008) Biodegradable composite foams of PLA and PHBV using subcritical CO2. J Polym Environ 16(4):258–266CrossRefGoogle Scholar
  186. 186.
    Calimeri T, Battista E, Conforti F, Neri P, Di Martino M, Rossi M, Foresta U, Piro E, Ferrara F, Amorosi A (2011) A unique three-dimensional SCID-polymeric scaffold (SCID-synth-hu) model for in vivo expansion of human primary multiple myeloma cells. Leukemia 25(4):707CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Croisier F, Jérôme C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49(4):780–792CrossRefGoogle Scholar
  188. 188.
    Lim JI, Park H-K (2012) Fabrication of macroporous chitosan/poly (l-lactide) hybrid scaffolds by sodium acetate particulate-leaching method. J Porous Mater 19(3):383–387CrossRefGoogle Scholar
  189. 189.
    Moss T, Paulus IE, Raps D, Altstädt V, Greiner A (2017) Ultralight sponges of poly (para-xylylene) by template-assisted chemical vapour deposition. e-Polymers 17(4):255–261CrossRefGoogle Scholar
  190. 190.
    Mader M, Jérôme V r, Freitag R, Agarwal S, Greiner A (2018) Ultraporous, compressible, wettable polylactide/polycaprolactone sponges for tissue engineering. Biomacromolecules 19(5):1663–1673CrossRefGoogle Scholar
  191. 191.
    Chen W, Chen S, Morsi Y, El-Hamshary H, El-Newhy M, Fan C, Mo X (2016) Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl Mater Interfaces 8(37):24415–24425CrossRefGoogle Scholar
  192. 192.
    Chen W, Ma J, Zhu L, Morsi Y, Al-Deyab SS, Mo X (2016) Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering. Colloids Surf B Biointerfaces 142:165–172CrossRefGoogle Scholar
  193. 193.
    Nettles DL, Elder SH, Gilbert JA (2002) Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng 8(6):1009–1016CrossRefGoogle Scholar
  194. 194.
    Xia W, Liu W, Cui L, Liu Y, Zhong W, Liu D, Wu J, Chua K, Cao Y (2004) Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds. J Biomed Mater Res B Appl Biomater 71(2):373–380CrossRefGoogle Scholar
  195. 195.
    Chung C, Burdick JA (2008) Engineering cartilage tissue. Adv Drug Deliv Rev 60(2):243–262CrossRefGoogle Scholar
  196. 196.
    Li WJ, Danielson KG, Alexander PG, Tuan RS (2003) Biological response of chondrocytes cultured in three-dimensional nanofibrous poly (ϵ-caprolactone) scaffolds. J Biomed Mater Res A 67(4):1105–1114CrossRefGoogle Scholar
  197. 197.
    Hsu SH, Chang SH, Yen HJ, Whu SW, Tsai CL, Chen DC (2006) Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration. Artif Organs 30(1):42–55CrossRefGoogle Scholar
  198. 198.
    Yoo HS, Lee EA, Yoon JJ, Park TG (2005) Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 26(14):1925–1933CrossRefGoogle Scholar
  199. 199.
    Casper M, Fitzsimmons J, Stone J, Meza A, Huang Y, Ruesink T, O’Driscoll S, Reinholz G (2010) Tissue engineering of cartilage using poly-ɛ-caprolactone nanofiber scaffolds seeded in vivo with periosteal cells. Osteoarthr Cartil 18(7):981–991CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Radice M, Brun P, Cortivo R, Scapinelli R, Battaliard C, Abatangelo G (2000) Hyaluronan-based biopolymers as delivery vehicles for bone-marrow-derived mesenchymal progenitors. J Biomed Mater Res 50(2):101–109CrossRefGoogle Scholar
  201. 201.
    Shoichet MS, Tate CC, Baumann MD, LaPlaca MC (2008) Strategies for regeneration and repair in the injured central nervous system. In: Indwelling neural implants: strategies for contending with the in vivo environment. CRC/Taylor and Francis, Boca Raton, FLGoogle Scholar
  202. 202.
    Reichert WM (2007) Indwelling neural implants: strategies for contending with the in vivo environment. CRC, Boca Raton, FLCrossRefGoogle Scholar
  203. 203.
    Samadikuchaksaraei A (2007) An overview of tissue engineering approaches for management of spinal cord injuries. J Neuroeng Rehabil 4(1):15CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Tu Q, Pang L, Wang L, Zhang Y, Zhang R, Wang J (2013) Biomimetic choline-like graphene oxide composites for neurite sprouting and outgrowth. ACS Appl Mater Interfaces 5(24):13188–13197CrossRefGoogle Scholar
  205. 205.
    Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30(26):4325–4335CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Fan L, Xiong Y, Fu Z, Xu D, Wang L, Chen Y, Xia H, Peng N, Ye S, Wang Y (2017) Polyaniline promotes peripheral nerve regeneration by enhancement of the brain-derived neurotrophic factor and ciliary neurotrophic factor expression and activation of the ERK1/2/MAPK signaling pathway. Mol Med Rep 16(5):7534–7540CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Xu D, Fan L, Gao L, Xiong Y, Wang Y, Ye Q, Yu A, Dai H, Yin Y, Cai J (2016) Micro-nanostructured polyaniline assembled in cellulose matrix via interfacial polymerization for applications in nerve regeneration. ACS Appl Mater Interfaces 8(27):17090–17097CrossRefGoogle Scholar
  208. 208.
    Pires F, Ferreira Q, Rodrigues CA, Morgado J, Ferreira FC (2015) Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim Biophys Acta 1850(6):1158–1168CrossRefGoogle Scholar
  209. 209.
    Ostrakhovitch E, Byers J, O’Neil K, Semenikhin O (2012) Directed differentiation of embryonic P19 cells and neural stem cells into neural lineage on conducting PEDOT–PEG and ITO glass substrates. Arch Biochem Biophys 528(1):21–31CrossRefGoogle Scholar
  210. 210.
    Farzamfar S, Esmailpour F, Rahmati M, Vaez A, Mirzaii M, Garmabi B, Shayannia A, Ebrahimi E, Vahedi H, Salehi M. Poly-lactic acid/gelatin nanofiber (PLA/GTNF) conduits containing platelet-rich plasma for peripheral nerve regeneration. Int J Health Stud. 2017;3(2).Google Scholar
  211. 211.
    Boni R, Ali A, Shavandi A, Clarkson AN (2018) Current and novel polymeric biomaterials for neural tissue engineering. J Biomed Sci 25(1):90CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Kim M, Kim J, Hyun J (2017) Development of Schwann cell-seeded multichannel scaffolds for peripheral nerve regeneration. J Neurol Sci 381:612–613Google Scholar
  213. 213.
    Mir M, Ahmed N, Rehman A (2017) Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces 159:217–231CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Garbayo E, Montero-Menei C, Ansorena E, Lanciego JL, Aymerich MS, Blanco-Prieto MJ (2009) Effective GDNF brain delivery using microspheres—a promising strategy for Parkinson's disease. J Control Release 135(2):119–126CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Lampe KJ, Mooney RG, Bjugstad KB, Mahoney MJ (2010) Effect of macromer weight percent on neural cell growth in 2D and 3D nondegradable PEG hydrogel culture. J Biomed Mater Res A 94(4):1162–1171PubMedPubMedCentralGoogle Scholar
  216. 216.
    Freudenberg U, Hermann A, Welzel PB, Stirl K, Schwarz SC, Grimmer M, Zieris A, Panyanuwat W, Zschoche S, Meinhold D (2009) A star-PEG–heparin hydrogel platform to aid cell replacement therapies for neurodegenerative diseases. Biomaterials 30(28):5049–5060CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Mahoney MJ, Anseth KS (2006) Three-dimensional growth and function of neural tissue in degradable polyethylene glycol hydrogels. Biomaterials 27(10):2265–2274CrossRefGoogle Scholar
  218. 218.
    Liu C, Huang Y, Pang M, Yang Y, Li S, Liu L, Shu T, Zhou W, Wang X, Rong L (2015) Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds. PLoS One 10(3):e0117709CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Wangensteen KJ, Kalliainen LK (2010) Collagen tube conduits in peripheral nerve repair: a retrospective analysis. Hand 5(3):273–277CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Bozkurt A, Claeys KG, Schrading S, Rödler JV, Altinova H, Schulz JB, Weis J, Pallua N, van Neerven SG (2017) Clinical and biometrical 12-month follow-up in patients after reconstruction of the sural nerve biopsy defect by the collagen-based nerve guide Neuromaix. Eur J Med Res 22(1):34CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Archibald S, Shefner J, Krarup C, Madison R (1995) Monkey median nerve repaired by nerve graft or collagen nerve guide tube. J Neurosci 15(5):4109–4123CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Gonzalez-Perez F, Cobianchi S, Heimann C, Phillips JB, Udina E, Navarro X (2017) Stabilization, rolling, and addition of other extracellular matrix proteins to collagen hydrogels improve regeneration in chitosan guides for long peripheral nerve gaps in rats. Neurosurgery 80(3):465–474CrossRefGoogle Scholar
  223. 223.
    Ceballos D, Navarro X, Dubey N, Wendelschafer-Crabb G, Kennedy WR, Tranquillo RT (1999) Magnetically aligned collagen gel filling a collagen nerve guide improves peripheral nerve regeneration. Exp Neurol 158(2):290–300CrossRefGoogle Scholar
  224. 224.
    Cao J, Sun C, Zhao H, Xiao Z, Chen B, Gao J, Zheng T, Wu W, Wu S, Wang J (2011) The use of laminin modified linear ordered collagen scaffolds loaded with laminin-binding ciliary neurotrophic factor for sciatic nerve regeneration in rats. Biomaterials 32(16):3939–3948CrossRefGoogle Scholar
  225. 225.
    Dubey N, Letourneau P, Tranquillo R (1999) Guided neurite elongation and Schwann cell invasion into magnetically aligned collagen in simulated peripheral nerve regeneration. Exp Neurol 158(2):338–350CrossRefGoogle Scholar
  226. 226.
    Faghihi F, Mirzaei E, Ai J, Lotfi A, Sayahpour FA, Barough SE, Joghataei MT (2016) Differentiation potential of human chorion-derived mesenchymal stem cells into motor neuron-like cells in two-and three-dimensional culture systems. Mol Neurobiol 53(3):1862–1872CrossRefGoogle Scholar
  227. 227.
    Büyüköz M, Erdal E, Alsoy Altinkaya S (2018) Nanofibrous gelatine scaffolds integrated with nerve growth factor-loaded alginate microspheres for brain tissue engineering. J Tissue Eng Regen Med 12(2):e707–e719CrossRefGoogle Scholar
  228. 228.
    Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S (2008) Electrospun poly (ɛ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29(34):4532–4539CrossRefGoogle Scholar
  229. 229.
    Dinis T, Elia R, Vidal G, Dermigny Q, Denoeud C, Kaplan D, Egles C, Marin F (2015) 3D multi-channel bi-functionalized silk electrospun conduits for peripheral nerve regeneration. J Mech Behav Biomed Mater 41:43–55CrossRefGoogle Scholar
  230. 230.
    Wang S, Guan S, Zhu Z, Li W, Liu T, Ma X (2017) Hyaluronic acid doped-poly(3,4-ethylenedioxythiophene)/chitosan/gelatin (PEDOT-HA/Cs/Gel) porous conductive scaffold for nerve regeneration. Mater Sci Eng C 71:308–316CrossRefGoogle Scholar
  231. 231.
    Steel DA, Basu S (2017) Does trajectory matter? A study looking into the relationship of trajectory with target engagement and error accommodation in subthalamic nucleus deep brain stimulation. Acta Neurochir 159(7):1335–1340CrossRefPubMedPubMedCentralGoogle Scholar
  232. 232.
    Ansorena E, De Berdt P, Ucakar B, Simón-Yarza T, Jacobs D, Schakman O, Jankovski A, Deumens R, Blanco-Prieto MJ, Préat V (2013) Injectable alginate hydrogel loaded with GDNF promotes functional recovery in a hemisection model of spinal cord injury. Int J Pharm 455(1-2):148–158CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Crompton K, Goud J, Bellamkonda R, Gengenbach T, Finkelstein D, Horne M, Forsythe J (2007) Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials 28(3):441–449CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Valmikinathan CM, Mukhatyar VJ, Jain A, Karumbaiah L, Dasari M, Bellamkonda RV (2012) Photocrosslinkable chitosan based hydrogels for neural tissue engineering. Soft Matter 8(6):1964–1976CrossRefPubMedPubMedCentralGoogle Scholar
  235. 235.
    Yi X, Jin G, Tian M, Mao W, Qin J (2011) Porous chitosan scaffold and ngf promote neuronal differentiation of neural stem cells in vitro. Neuro Endocrinol Lett 32(5):705–710PubMedPubMedCentralGoogle Scholar
  236. 236.
    Kuo Y-C, Yeh C-F, Yang J-T (2009) Differentiation of bone marrow stromal cells in poly (lactide-co-glycolide)/chitosan scaffolds. Biomaterials 30(34):6604–6613CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Sierpinski P, Garrett J, Ma J, Apel P, Klorig D, Smith T, Koman LA, Atala A, Van Dyke M (2008) The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials 29(1):118–128CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    Bai S, Zhang W, Lu Q, Ma Q, Kaplan DL, Zhu H (2014) Silk nanofiber hydrogels with tunable modulus to regulate nerve stem cell fate. J Mater Chem B 2(38):6590–6600CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Hopkins AM, De Laporte L, Tortelli F, Spedden E, Staii C, Atherton TJ, Hubbell JA, Kaplan DL (2013) Silk hydrogels as soft substrates for neural tissue engineering. Adv Funct Mater 23(41):5140–5149CrossRefGoogle Scholar
  240. 240.
    Zhang Q, Zhao Y, Yan S, Yang Y, Zhao H, Li M, Lu S, Kaplan DL (2012) Preparation of uniaxial multichannel silk fibroin scaffolds for guiding primary neurons. Acta Biomater 8(7):2628–2638CrossRefPubMedPubMedCentralGoogle Scholar
  241. 241.
    Xue C, Hu N, Gu Y, Yang Y, Liu Y, Liu J, Ding F, Gu X (2012) Joint use of a chitosan/PLGA scaffold and MSCs to bridge an extra large gap in dog sciatic nerve. Neurorehabil Neural Repair 26(1):96–106CrossRefPubMedPubMedCentralGoogle Scholar
  242. 242.
    Zhou X, Yang A, Huang Z, Yin G, Pu X, Jin J (2017) Enhancement of neurite adhesion, alignment and elongation on conductive polypyrrole-poly (lactide acid) fibers with cell-derived extracellular matrix. Colloids Surf B Biointerfaces 149:217–225CrossRefPubMedPubMedCentralGoogle Scholar
  243. 243.
    Shin J, Choi EJ, Cho JH, Cho A-N, Jin Y, Yang K, Song C, Cho S-W (2017) Three-dimensional electroconductive hyaluronic acid hydrogels incorporated with carbon nanotubes and polypyrrole by catechol-mediated dispersion enhance neurogenesis of human neural stem cells. Biomacromolecules 18(10):3060–3072CrossRefPubMedPubMedCentralGoogle Scholar
  244. 244.
    Xu B, Bai T, Sinclair A, Wang W, Wu Q, Gao F, Jia H, Jiang S, Liu W. Directed neural stem cell differentiation on polyaniline-coated high strength hydrogels. 2016;1.Google Scholar
  245. 245.
    Guarino V, Alvarez-Perez MA, Borriello A, Napolitano T, Ambrosio L (2013) Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration. Adv Healthc Mater 2(1):218–227CrossRefPubMedPubMedCentralGoogle Scholar
  246. 246.
    Nyambat B, Chen C-H, Wong P-C, Chiang C-W, Satapathy MK, Chuang E-Y (2018) Genipin-crosslinked adipose stem cell derived extracellular matrix-nano graphene oxide composite sponge for skin tissue engineering. J Mater Chem B 6(6):979–990CrossRefGoogle Scholar
  247. 247.
    Boucard N, Viton C, Agay D, Mari E, Roger T, Chancerelle Y, Domard A (2007) The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28(24):3478–3488CrossRefPubMedPubMedCentralGoogle Scholar
  248. 248.
    Atiyeh BS, Gunn SW, Hayek SN (2005) State of the art in burn treatment. World J Surg 29(2):131–148CrossRefPubMedPubMedCentralGoogle Scholar
  249. 249.
    Phan T, Lim I, Tan E, Bay B, Lee S (2005) Evaluation of cell culture on the polyurethane-based membrane (Tegaderm TM): implication for tissue engineering of skin. Cell Tissue Bank 6(2):91–97CrossRefPubMedPubMedCentralGoogle Scholar
  250. 250.
    Holland K, Davis W, Ingham E, Gowland G (1984) A comparison of the in-vitro antibacterial and complement activating effect of ‘OpSite’and ‘Tegaderm’ dressings. J Hosp Infect 5(3):323–328CrossRefPubMedPubMedCentralGoogle Scholar
  251. 251.
    Liu H, Yin Y, Yao K (2007) Construction of chitosan—gelatin—hyaluronic acid artificial skin in vitro. J Biomater Appl 21(4):413–430CrossRefPubMedPubMedCentralGoogle Scholar
  252. 252.
    Wang T-W, Sun J-S, Wu H-C, Tsuang Y-H, Wang W-H, Lin F-H (2006) The effect of gelatin–chondroitin sulfate–hyaluronic acid skin substitute on wound healing in SCID mice. Biomaterials 27(33):5689–5697CrossRefPubMedPubMedCentralGoogle Scholar
  253. 253.
    Ng KW, Hutmacher DW (2006) Reduced contraction of skin equivalent engineered using cell sheets cultured in 3D matrices. Biomaterials 27(26):4591–4598CrossRefPubMedPubMedCentralGoogle Scholar
  254. 254.
    Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C (2003) Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 24(26):4833–4841CrossRefPubMedPubMedCentralGoogle Scholar
  255. 255.
    Dai N-T, Williamson M, Khammo N, Adams E, Coombes A (2004) Composite cell support membranes based on collagen and polycaprolactone for tissue engineering of skin. Biomaterials 25(18):4263–4271CrossRefPubMedPubMedCentralGoogle Scholar
  256. 256.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, De Ferranti S, Després J-P, Fullerton HJ (2016) Executive summary: heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133(4):447–454CrossRefGoogle Scholar
  257. 257.
    Shin SR, Li Y-C, Jang HL, Khoshakhlagh P, Akbari M, Nasajpour A, Zhang YS, Tamayol A, Khademhosseini A (2016) Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 105:255–274CrossRefPubMedPubMedCentralGoogle Scholar
  258. 258.
    Morgan KY, Black LD III (2014) It's all in the timing: Modeling isovolumic contraction through development and disease with a dynamic dual electromechanical bioreactor system. Organogenesis 10(3):317–322CrossRefPubMedPubMedCentralGoogle Scholar
  259. 259.
    Zhang D, Shadrin IY, Lam J, Xian H-Q, Snodgrass HR, Bursac N (2013) Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 34(23):5813–5820CrossRefPubMedPubMedCentralGoogle Scholar
  260. 260.
    Lakshmanan R, Krishnan UM, Sethuraman S (2012) Living cardiac patch: the elixir for cardiac regeneration. Expert Opin Biol Ther 12(12):1623–1640CrossRefPubMedPubMedCentralGoogle Scholar
  261. 261.
    Martins AM, Eng G, Caridade SG, Mano JOF, Reis RL, Vunjak-Novakovic G (2014) Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules 15(2):635–643CrossRefPubMedPubMedCentralGoogle Scholar
  262. 262.
    Reis LA, Chiu LL, Liang Y, Hyunh K, Momen A, Radisic M (2012) A peptide-modified chitosan–collagen hydrogel for cardiac cell culture and delivery. Acta Biomater 8(3):1022–1036CrossRefPubMedPubMedCentralGoogle Scholar
  263. 263.
    Saravanan S, Sareen N, Abu-El-Rub E, Ashour H, Sequiera GL, Ammar HI, Gopinath V, Shamaa AA, Sayed SSE, Moudgil M, Vadivelu J, Dhingra S (2018) Graphene oxide-gold nanosheets containing chitosan scaffold improves ventricular contractility and function after implantation into infarcted heart. Sci Rep 8(1):15069CrossRefPubMedPubMedCentralGoogle Scholar
  264. 264.
    Lu W-N, Lü S-H, Wang H-B, Li D-X, Duan C-M, Liu Z-Q, Hao T, He W-J, Xu B, Fu Q, Song YC, Xie X-H, Wang C-Y (2008) Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng Part A 15(6):1437–1447CrossRefGoogle Scholar
  265. 265.
    Cui Z, Ni NC, Wu J, Du G-Q, He S, Yau TM, Weisel RD, Sung H-W, Li R-K (2018) Polypyrrole-chitosan conductive biomaterial synchronizes cardiomyocyte contraction and improves myocardial electrical impulse propagation. Theranostics 8(10):2752CrossRefPubMedPubMedCentralGoogle Scholar
  266. 266.
    Shachar M, Tsur-Gang O, Dvir T, Leor J, Cohen S (2011) The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater 7(1):152–162CrossRefPubMedPubMedCentralGoogle Scholar
  267. 267.
    Rosellini E, Cristallini C, Barbani N, Vozzi G, Giusti P (2009) Preparation and characterization of alginate/gelatin blend films for cardiac tissue engineering. J Biomed Mater Res A 91(2):447–453CrossRefPubMedPubMedCentralGoogle Scholar
  268. 268.
    O’Neill HS, O’Sullivan J, Porteous N, Ruiz Hernandez E, Kelly HM, O’Brien F, Duffy GP. A collagen cardiac patch incorporating alginate microparticles permits the controlled release of HGF and IGF-1 to enhance cardiac stem cell migration and proliferation. 2016.Google Scholar
  269. 269.
    Dahlmann J, Krause A, Möller L, Kensah G, Möwes M, Diekmann A, Martin U, Kirschning A, Gruh I, Dräger G (2013) Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34(4):940–951CrossRefPubMedPubMedCentralGoogle Scholar
  270. 270.
    Sapir Y, Kryukov O, Cohen S (2011) Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 32(7):1838–1847CrossRefPubMedPubMedCentralGoogle Scholar
  271. 271.
    Agarwal A, Farouz Y, Nesmith AP, Deravi LF, McCain ML, Parker KK (2013) Micropatterning alginate substrates for in vitro cardiovascular muscle on a chip. Adv Funct Mater 23(30):3738–3746CrossRefPubMedPubMedCentralGoogle Scholar
  272. 272.
    Zimmermann W-H, Melnychenko I, Wasmeier G, Didié M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B (2006) Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med 12(4):452CrossRefPubMedPubMedCentralGoogle Scholar
  273. 273.
    Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, Rofail F, Smith H, Wu BM, Shemin R, Beygui RE, MacLellan WR (2008) Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 29(19):2907–2914CrossRefPubMedPubMedCentralGoogle Scholar
  274. 274.
    Flanagan TC, Wilkins B, Black A, Jockenhoevel S, Smith TJ, Pandit AS (2006) A collagen-glycosaminoglycan co-culture model for heart valve tissue engineering applications. Biomaterials 27(10):2233–2246CrossRefPubMedPubMedCentralGoogle Scholar
  275. 275.
    Tedder ME, Simionescu A, Chen J, Liao J, Simionescu DT (2010) Assembly and testing of stem cell-seeded layered collagen constructs for heart valve tissue engineering. Tissue Eng Part A 17(1-2):25–36CrossRefPubMedPubMedCentralGoogle Scholar
  276. 276.
    Tijore A, Irvine SA, Sarig U, Mhaisalkar P, Baisane V, Venkatraman S (2018) Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel. Biofabrication 10(2):025003CrossRefPubMedPubMedCentralGoogle Scholar
  277. 277.
    Elamparithi A, Punnoose AM, Paul SF, Kuruvilla S (2017) Gelatin electrospun nanofibrous matrices for cardiac tissue engineering applications. Int J Polym Mater Polym Biomater 66(1):20–27CrossRefGoogle Scholar
  278. 278.
    Kerscher P, Kaczmarek JA, Head SE, Ellis ME, Seeto WJ, Kim J, Bhattacharya S, Suppiramaniam V, Lipke EA (2016) Direct production of human cardiac tissues by pluripotent stem cell encapsulation in gelatin methacryloyl. ACS Biomater Sci Eng 3(8):1499–1509CrossRefGoogle Scholar
  279. 279.
    Stoppel WL, Hu D, Domian IJ, Kaplan DL, Black LD III (2015) Anisotropic silk biomaterials containing cardiac extracellular matrix for cardiac tissue engineering. Biomed Mater 10(3):034105CrossRefPubMedPubMedCentralGoogle Scholar
  280. 280.
    Mehrotra S, Nandi SK, Mandal BB (2017) Stacked silk-cell monolayers as a biomimetic three dimensional construct for cardiac tissue reconstruction. J Mater Chem B 5(31):6325–6338CrossRefGoogle Scholar
  281. 281.
    Patra C, Talukdar S, Novoyatleva T, Velagala SR, Mühlfeld C, Kundu B, Kundu SC, Engel FB (2012) Silk protein fibroin from Antheraea mylitta for cardiac tissue engineering. Biomaterials 33(9):2673–2680CrossRefPubMedPubMedCentralGoogle Scholar
  282. 282.
    Reimer J, Syedain Z, Haynie B, Lahti M, Berry J, Tranquillo R (2017) Implantation of a tissue-engineered tubular heart valve in growing lambs. Ann Biomed Eng 45(2):439–451CrossRefPubMedPubMedCentralGoogle Scholar
  283. 283.
    Ballotta V, Smits AI, Driessen-Mol A, Bouten CV, Baaijens FP (2014) Synergistic protein secretion by mesenchymal stromal cells seeded in 3D scaffolds and circulating leukocytes in physiological flow. Biomaterials 35(33):9100–9113CrossRefPubMedPubMedCentralGoogle Scholar
  284. 284.
    De Visscher G, Lebacq A, Mesure L, Blockx H, Vranken I, Plusquin R, Meuris B, Herregods M-C, Van Oosterwyck H, Flameng W (2010) The remodeling of cardiovascular bioprostheses under influence of stem cell homing signal pathways. Biomaterials 31(1):20–28CrossRefPubMedPubMedCentralGoogle Scholar
  285. 285.
    Ota T, Sawa Y, Iwai S, Kitajima T, Ueda Y, Coppin C, Matsuda H, Okita Y (2005) Fibronectin-hepatocyte growth factor enhances reendothelialization in tissue-engineered heart valve. Ann Thorac Surg 80(5):1794–1801CrossRefPubMedPubMedCentralGoogle Scholar
  286. 286.
    Park H, Radisic M, Lim JO, Chang BH, Vunjak-Novakovic G (2005) A novel composite scaffold for cardiac tissue engineering. In Vitro Cell Dev Biol Animal 41(7):188–196CrossRefGoogle Scholar
  287. 287.
    McDevitt TC, Woodhouse KA, Hauschka SD, Murry CE, Stayton PS (2003) Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. J Biomed Mater Res A 66(3):586–595CrossRefPubMedPubMedCentralGoogle Scholar
  288. 288.
    Yu J, Lee A-R, Lin W-H, Lin C-W, Wu Y-K, Tsai W-B (2014) Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering. Tissue Eng Part A 20(13-14):1896–1907CrossRefPubMedPubMedCentralGoogle Scholar
  289. 289.
    Ozawa T, Mickle DA, Weisel RD, Koyama N, Ozawa S, Li R-K (2002) Optimal biomaterial for creation of autologous cardiac grafts. Circulation 106(12_suppl_1):I-176–I-182Google Scholar
  290. 290.
    Matsubayashi K, Fedak PW, Mickle DA, Weisel RD, Ozawa T, Li R-K (2003) Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation 108(10_suppl_1):II-219–II-225Google Scholar
  291. 291.
    Badrossamay MR, McIlwee HA, Goss JA, Parker KK (2010) Nanofiber assembly by rotary jet-spinning. Nano Lett 10(6):2257–2261CrossRefPubMedPubMedCentralGoogle Scholar
  292. 292.
    Xu J, Zhou X, Ge H, Yang D, Guo T (2006) Machine vision and feedback control system allow the precise control of vascular deformation in vitro. Rev Sci Instrum 77(6):064304CrossRefGoogle Scholar
  293. 293.
    Qazi TH, Rai R, Dippold D, Roether JE, Schubert DW, Rosellini E, Barbani N, Boccaccini AR (2014) Development and characterization of novel electrically conductive PANI–PGS composites for cardiac tissue engineering applications. Acta Biomater 10(6):2434–2445CrossRefPubMedPubMedCentralGoogle Scholar
  294. 294.
    Baheiraei N, Yeganeh H, Ai J, Gharibi R, Azami M, Faghihi F (2014) Synthesis, characterization and antioxidant activity of a novel electroactive and biodegradable polyurethane for cardiac tissue engineering application. Mater Sci Eng C 44:24–37CrossRefGoogle Scholar
  295. 295.
    Bidez PR, Li S, MacDiarmid AG, Venancio EC, Wei Y, Lelkes PI (2006) Polyaniline, an electroactive polymer, supports adhesion and proliferation of cardiac myoblasts. J Biomater Sci Polym Ed 17(1-2):199–212CrossRefPubMedPubMedCentralGoogle Scholar
  296. 296.
    Deng B, Shen L, Wu Y, Shen Y, Ding X, Lu S, Jia J, Qian J, Ge J (2015) Delivery of alginate-chitosan hydrogel promotes endogenous repair and preserves cardiac function in rats with myocardial infarction. J Biomed Mater Res A 103(3):907–918CrossRefGoogle Scholar
  297. 297.
    Huang NF, Yu J, Sievers R, Li S, Lee RJ (2005) Injectable biopolymers enhance angiogenesis after myocardial infarction. Tissue Eng 11(11-12):1860–1866CrossRefGoogle Scholar
  298. 298.
    Wang T, Jiang X-J, Tang Q-Z, Li X-Y, Lin T, Wu D-Q, Zhang X-Z, Okello E (2009) Bone marrow stem cells implantation with α-cyclodextrin/MPEG–PCL–MPEG hydrogel improves cardiac function after myocardial infarction. Acta Biomater 5(8):2939–2944CrossRefGoogle Scholar
  299. 299.
    Fujimoto KL, Ma Z, Nelson DM, Hashizume R, Guan J, Tobita K, Wagner WR (2009) Synthesis, characterization and therapeutic efficacy of a biodegradable, thermoresponsive hydrogel designed for application in chronic infarcted myocardium. Biomaterials 30(26):4357–4368CrossRefPubMedPubMedCentralGoogle Scholar
  300. 300.
    Caplan AI (2005) Mesenchymal stem cells: cell–based reconstructive therapy in orthopedics. Tissue Eng 11(7-8):1198–1211CrossRefGoogle Scholar
  301. 301.
    Wu J, Zeng F, Huang X-P, Chung JC-Y, Konecny F, Weisel RD, Li R-K (2011) Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials 32(2):579–586CrossRefGoogle Scholar
  302. 302.
    Mortality G Collaborators C. O. D. Global, regional, and national life expectancy, all-cause-specific mortality for 249 causes of death, 1980-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053).Google Scholar
  303. 303.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, Ferranti SD, Després J-P, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB (2016) Executive summary: heart disease and stroke statistics—2016 update. Circulation 133(4):447–454CrossRefGoogle Scholar
  304. 304.
    Soyer T, Lempinen M, Cooper P, Norton L, Eiseman B (1972) A new venous prosthesis. Surgery 72(6):864–872PubMedGoogle Scholar
  305. 305.
    DeBakey ME, Crawford ES, Garrett HE, Beall AC Jr, Howell J (1965) Surgical considerations in the treatment of aneurysms of the thoraco-abdominal aorta. Ann Surg 162(4):650CrossRefPubMedPubMedCentralGoogle Scholar
  306. 306.
    Konig G, McAllister TN, Dusserre N, Garrido SA, Iyican C, Marini A, Fiorillo A, Avila H, Wystrychowski W, Zagalski K, Maruszewski M, Jones AL, Cierpka L, de la Fuente LM, L'Heureux N (2009) Mechanical properties of completely autologous human tissue engineered blood vessels compared to human saphenous vein and mammary artery. Biomaterials 30(8):1542–1550CrossRefGoogle Scholar
  307. 307.
    L'Heureux N, Germain L, Labbé R, Auger FA (1993) In vitro construction of a human blood vessel from cultured vascular cells: a morphologic study. J Vasc Surg 17(3):499–509CrossRefGoogle Scholar
  308. 308.
    Brennan MP, Dardik A, Hibino N, Roh JD, Nelson GN, Papademitris X, Shinoka T, Breuer CK (2008) Tissue engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann Surg 248(3):370PubMedPubMedCentralGoogle Scholar
  309. 309.
    Shin'oka T, Imai Y, Ikada Y (2001) Transplantation of a tissue-engineered pulmonary artery. N Engl J Med 344(7):532–533CrossRefGoogle Scholar
  310. 310.
    Matsumura G, Hibino N, Ikada Y, Kurosawa H, Shin’oka T (2003) Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials 24(13):2303–2308CrossRefGoogle Scholar
  311. 311.
    Mazza G, Al-Akkad W, Rombouts K, Pinzani M (2018) Liver tissue engineering: from implantable tissue to whole organ engineering. Hepatol Commun 2(2):131–141CrossRefGoogle Scholar
  312. 312.
    Shi X-L, Zhang Y, Gu J-Y, Ding Y-T (2009) Coencapsulation of hepatocytes with bone marrow mesenchymal stem cells improves hepatocyte-specific functions. Transplantation 88(10):1178–1185CrossRefGoogle Scholar
  313. 313.
    Li Y-S, Harn H-J, Hsieh D-K, Wen T-C, Subeq Y-M, Sun L-Y, Lin S-Z, Chiou T-W (2013) Cells and materials for liver tissue engineering. Cell Transplant 22(4):685–700CrossRefGoogle Scholar
  314. 314.
    Zheng M-H, Ye C, Braddock M, Chen Y-P (2010) Liver tissue engineering: promises and prospects of new technology. Cytotherapy 12(3):349–360CrossRefGoogle Scholar
  315. 315.
    Levenberg S, Burdick JA, Kraehenbuehl T, Langer R (2005) Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds. Tissue Eng 11(3-4):506–512CrossRefGoogle Scholar
  316. 316.
    Levenberg S, Huang NF, Lavik E, Rogers AB, Itskovitz-Eldor J, Langer R (2003) Differentiation of human embryonic stem cells on three-dimensional polymer scaffolds. Proc Natl Acad Sci 100(22):12741–12746CrossRefGoogle Scholar
  317. 317.
    Rimann M, Graf-Hausner U (2012) Synthetic 3D multicellular systems for drug development. Curr Opin Biotechnol 23(5):803–809CrossRefGoogle Scholar
  318. 318.
    Tsang VL, Chen AA, Cho LM, Jadin KD, Sah RL, DeLong S, West JL, Bhatia SN (2007) Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J 21(3):790–801CrossRefGoogle Scholar
  319. 319.
    Lee H, Han W, Kim H, Ha D-H, Jang J, Kim BS, Cho D-W (2017) Development of liver decellularized extracellular matrix bioink for three-dimensional cell printing-based liver tissue engineering. Biomacromolecules 18(4):1229–1237CrossRefGoogle Scholar
  320. 320.
    Detzel CJ, Kim Y, Rajagopalan P (2010) Engineered three-dimensional liver mimics recapitulate critical rat-specific bile acid pathways. Tissue Eng Part A 17(5-6):677–689CrossRefPubMedPubMedCentralGoogle Scholar
  321. 321.
    Miranda JP, Rodrigues A, Tostoes RM, Leite S, Zimmerman H, Carrondo MJ, Alves PM (2010) Extending hepatocyte functionality for drug-testing applications using high-viscosity alginate–encapsulated three-dimensional cultures in bioreactors. Tissue Eng Part C Methods 16(6):1223–1232CrossRefGoogle Scholar
  322. 322.
    Katsuda T, Teratani T, Ochiya T, Sakai Y (2010) Transplantation of a fetal liver cell-loaded hyaluronic acid sponge onto the mesentery recovers a Wilson’s disease model rat. J Biochem 148(3):281–288CrossRefGoogle Scholar
  323. 323.
    Barbour KE, Helmick CG, Theis KA, Murphy LB, Hootman JM, Brady TJ, Cheng YJ (2013) Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation—United States, 2010–2012. MMWR Morb Mortal Wkly Rep 62(44):869PubMedCentralPubMedGoogle Scholar
  324. 324.
    Hangody L, Kish G, Karpati Z, Szerb I, Udvarhelyi I (1997) Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects. A preliminary report. Knee Surg Sports Traumatol Arthrosc 5(4):262–267CrossRefGoogle Scholar
  325. 325.
    Carranza-Bencano A, Garcı́a-Paino L, Padron JA, Dominguez AC. Neochondrogenesis in repair of full-thickness articular cartilage defects using free autogenous periosteal grafts in the rabbit. A follow-up in six months. Osteoarthritis Cartilage. 2000;8(5):351–8.Google Scholar
  326. 326.
    Sledge SL (2001) Microfracture techniques in the treatment of osteochondral injuries. Clin Sports Med 20(2):365–378CrossRefGoogle Scholar
  327. 327.
    Yang PJ, Temenoff JS (2009) Engineering orthopedic tissue interfaces. Tissue Eng Part B Rev 15(2):127–141CrossRefPubMedPubMedCentralGoogle Scholar
  328. 328.
    Keeney M, Pandit A (2009) The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng Part B Rev 15(1):55–73CrossRefGoogle Scholar
  329. 329.
    Gao J, Dennis JE, Solchaga LA, Awadallah AS, Goldberg VM, Caplan AI (2001) Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng 7(4):363–371CrossRefGoogle Scholar
  330. 330.
    Schaefer D, Martin I, Shastri P, Padera R, Langer R, Freed L, Vunjak-Novakovic G (2000) In vitro generation of osteochondral composites. Biomaterials 21(24):2599–2606CrossRefPubMedPubMedCentralGoogle Scholar
  331. 331.
    Alhadlaq A, Mao JJ (2005) Tissue-engineered osteochondral constructs in the shape of an articular condyle. JBJS 87(5):936–944CrossRefGoogle Scholar
  332. 332.
    Jiang J, Tang A, Ateshian GA, Guo XE, Hung CT, Lu HH (2010) Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair. Ann Biomed Eng 38(6):2183–2196CrossRefPubMedPubMedCentralGoogle Scholar
  333. 333.
    Harley BA, Lynn AK, Wissner-Gross Z, Bonfield W, Yannas IV, Gibson LJ (2010) Design of a multiphase osteochondral scaffold III: Fabrication of layered scaffolds with continuous interfaces. J Biomed Mater Res A 92(3):1078–1093PubMedPubMedCentralGoogle Scholar
  334. 334.
    Paxton JZ, Donnelly K, Keatch RP, Baar K (2008) Engineering the bone–ligament interface using polyethylene glycol diacrylate incorporated with hydroxyapatite. Tissue Eng Part A 15(6):1201–1209CrossRefGoogle Scholar
  335. 335.
    Spalazzi JP, Doty SB, Moffat KL, Levine WN, Lu HH (2006) Development of controlled matrix heterogeneity on a triphasic scaffold for orthopedic interface tissue engineering. Tissue Eng 12(12):3497–3508CrossRefPubMedPubMedCentralGoogle Scholar
  336. 336.
    Singh M, Morris CP, Ellis RJ, Detamore MS, Berkland C (2008) Microsphere-based seamless scaffolds containing macroscopic gradients of encapsulated factors for tissue engineering. Tissue Eng Part C Methods 14(4):299–309CrossRefPubMedPubMedCentralGoogle Scholar
  337. 337.
    Erisken C, Kalyon DM, Wang H (2008) Functionally graded electrospun polycaprolactone and β-tricalcium phosphate nanocomposites for tissue engineering applications. Biomaterials 29(30):4065–4073CrossRefGoogle Scholar
  338. 338.
    Ramalingam M, Young MF, Thomas V, Sun L, Chow LC, Tison CK, Chatterjee K, Miles WC, Simon CG Jr (2013) Nanofiber scaffold gradients for interfacial tissue engineering. J Biomater Appl 27(6):695–705CrossRefGoogle Scholar
  339. 339.
    Ferroni L, Gardin C, Sivolella S, Brunello G, Berengo M, Piattelli A, Bressan E, Zavan B (2015) A hyaluronan-based scaffold for the in vitro construction of dental pulp-like tissue. Int J Mol Sci 16(3):4666–4681CrossRefPubMedPubMedCentralGoogle Scholar
  340. 340.
    Barbara Z, Eriberto B, Stefano S, Giulia B, Chiara G, Ferrarese N, Letizia F, Edoardo S. Dental pulp stem cells and tissue engineering strategies for clinical application on odontoiatric field. In: Biomaterials science and engineering. IntechOpen; 2011.Google Scholar
  341. 341.
    Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504CrossRefGoogle Scholar
  342. 342.
    Mallick S, Tripathi S, Srivastava P (2015) Advancement in scaffolds for bone tissue engineering: a review. J Pharm Biol Sci 10:37–54Google Scholar
  343. 343.
    Shahbazarab Z, Teimouri A, Chermahini AN, Azadi M (2018) Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering. Int J Biol Macromol 108:1017–1027CrossRefGoogle Scholar
  344. 344.
    Ghorbanian L, Emadi R, Razavi SM, Shin H, Teimouri A (2013) Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillofacial bone regeneration. Int J Biol Macromol 58:275–280CrossRefGoogle Scholar
  345. 345.
    Santo VE, Rodrigues MT, Gomes ME (2013) Contributions and future perspectives on the use of magnetic nanoparticles as diagnostic and therapeutic tools in the field of regenerative medicine. Expert Rev Mol Diagn 13(6):553–566CrossRefGoogle Scholar
  346. 346.
    Endogan Tanir T, Hasirci V, Hasirci N (2015) Preparation and characterization of Chitosan and PLGA-based scaffolds for tissue engineering applications. Polym Compos 36(10):1917–1930CrossRefGoogle Scholar
  347. 347.
    Nwe N, Furuike T, Tamura H (2009) The mechanical and biological properties of chitosan scaffolds for tissue regeneration templates are significantly enhanced by chitosan from gongronella butleri. Materials 2(2):374–398CrossRefPubMedPubMedCentralGoogle Scholar
  348. 348.
    Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly (L-lactic acid) foams. Polymer 35(5):1068–1077CrossRefGoogle Scholar
  349. 349.
    Mikos AG, Sarakinos G, Vacanti JP, Langer RS, Cima LG. Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures. Google Patents; 1996.Google Scholar
  350. 350.
    Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40CrossRefGoogle Scholar
  351. 351.
    Johnson T, Bahrampourian R, Patel A, Mequanint K (2010) Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens. Biomed Mater Eng 20(2):107–118PubMedPubMedCentralGoogle Scholar
  352. 352.
    Liao CJ, Chen CF, Chen JH, Chiang SF, Lin YJ, Chang KY (2002) Fabrication of porous biodegradable polymer scaffolds using a solvent merging/particulate leaching method. J Biomed Mater Res 59(4):676–681CrossRefPubMedPubMedCentralGoogle Scholar
  353. 353.
    Nam YS, Park TG (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 47(1):8–17CrossRefPubMedPubMedCentralGoogle Scholar
  354. 354.
    Akbarzadeh R, Yousefi AM (2014) Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 102(6):1304–1315CrossRefPubMedPubMedCentralGoogle Scholar
  355. 355.
    Martínez-Pérez CA, Olivas-Armendariz I, Castro-Carmona JS, García-Casillas PE. Scaffolds for tissue engineering via thermally induced phase separation. In: Advances in regenerative medicine. IntechOpen; 2011.Google Scholar
  356. 356.
    Nam YS, Park TG (1999) Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials 20(19):1783–1790CrossRefPubMedPubMedCentralGoogle Scholar
  357. 357.
    Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, Bowlin GL (2001) Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly (glycolic acid) electrospinning. J Macromol Sci Pt A 38(12):1231–1243CrossRefGoogle Scholar
  358. 358.
    Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):613–621CrossRefPubMedPubMedCentralGoogle Scholar
  359. 359.
    Yoshimoto H, Shin Y, Terai H, Vacanti J (2003) A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24(12):2077–2082CrossRefPubMedPubMedCentralGoogle Scholar
  360. 360.
    Wnek GE, Carr ME, Simpson DG, Bowlin GL (2003) Electrospinning of nanofiber fibrinogen structures. Nano Lett 3(2):213–216CrossRefGoogle Scholar
  361. 361.
    Lips P, Velthoen I, Dijkstra PJ, Wessling M, Feijen J (2005) Gas foaming of segmented poly (ester amide) films. Polymer 46(22):9396–9403CrossRefGoogle Scholar
  362. 362.
    Barbetta A, Carrino A, Costantini M, Dentini M (2010) Polysaccharide based scaffolds obtained by freezing the external phase of gas-in-liquid foams. Soft Matter 6(20):5213–5224CrossRefGoogle Scholar
  363. 363.
    Barbetta A, Rizzitelli G, Bedini R, Pecci R, Dentini M (2010) Porous gelatin hydrogels by gas-in-liquid foam templating. Soft Matter 6(8):1785–1792CrossRefGoogle Scholar
  364. 364.
    Barry JJ, Silva MM, Popov VK, Shakesheff KM, Howdle SM (1838) Supercritical carbon dioxide: putting the fizz into biomaterials. Philos Trans R Soc A Math Phys Eng Sci 2005(364):249–261Google Scholar
  365. 365.
    Barbetta A, Barigelli E, Dentini M (2009) Porous alginate hydrogels: synthetic methods for tailoring the porous texture. Biomacromolecules 10(8):2328–2337CrossRefGoogle Scholar
  366. 366.
    Keskar V, Marion NW, Mao JJ, Gemeinhart RA (2009) In vitro evaluation of macroporous hydrogels to facilitate stem cell infiltration, growth, and mineralization. Tissue Eng Part A 15(7):1695–1707CrossRefPubMedPubMedCentralGoogle Scholar
  367. 367.
    Barbetta A, Gumiero A, Pecci R, Bedini R, Dentini M (2009) Gas-in-liquid foam templating as a method for the production of highly porous scaffolds. Biomacromolecules 10(12):3188–3192CrossRefPubMedPubMedCentralGoogle Scholar
  368. 368.
    Ju YM, Park K, Son JS, Kim JJ, Rhie JW, Han DK (2008) Beneficial effect of hydrophilized porous polymer scaffolds in tissue-engineered cartilage formation. J Biomed Mater Res B Appl Biomater 85(1):252–260CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Krishanu Ghosal
    • 1
  • Priyatosh Sarkar
    • 1
  • Rima Saha
    • 1
  • Santanu Ghosh
    • 1
  • Kishor Sarkar
    • 1
    Email author
  1. 1.Gene Therapy and Tissue Engineering Lab, Department of Polymer Science and TechnologyUniversity of CalcuttaKolkataIndia

Personalised recommendations