Advertisement

Peptide-mediated Bone Tissue Engineering

  • Abdullah Karadag
  • Hana’a Iqbal
  • Hilal YaziciEmail author
Chapter
  • 121 Downloads

Abstract

Bone is a highly vascularized tissue and one of the most dynamic tissues in terms of self-renewal throughout one’s life. It possesses a high regenerative capacity, which makes it possible that a majority of bone fractures will heal well without the need for major intervention. However, some large bone defects and fractures require medical intervention for bone repair and regeneration. Proteins, growth factors, and peptides have played a remarkable role in bone regeneration. However, the use of proteins and growth factors in tissue engineering has several limitations, such as cost and difficulty in production, immunogenicity, and a short half-life. In addition to these drawbacks, they have many active domains, which affect their functionality. Recently, an alternative to proteins and growth factors has emerged for the use in tissue engineering. This competent approach includes biomimetic peptides, which are amino acid sequences derived from the functional domains of soluble or extracellular matrix (ECM) proteins. Biological materials for tissue regeneration can be functionalized with these peptides to either mediate the adhesion of cells or to be released as soluble ligands. These short peptides are easy to design and synthesize, facilitating their use as cost-effective and efficient scaffolds for regenerative medicine. In this extensive chapter, several of the peptides that have potential for bone tissue engineering, including those that facilitate cell adhesion, prompt osteogenic differentiation of progenitor cells, or those that mediate angiogenesis which is a crucial requirement for proper bone regeneration will be discussed.

Keywords

Peptides Bone regeneration Scaffold Osteoinduction Biomimetic 

Notes

Acknowledgments

Dr. Hana’a Iqbal is jointly supported by institutional post-doctoral fellowship program, International Center for Chemical and Biological sciences (ICCBS) in Pakistan and the TUBITAK Marmara Research Center (MAM) in Turkey. The authors also thank TUBITAK-MAM for research funding (Project Code: 5183402).

References

  1. 1.
    Hirano Y, Mooney DJ (2004) Peptide and protein presenting materials for tissue engineering. Adv Mater 16(1):17–25.  https://doi.org/10.1002/adma.200300383CrossRefGoogle Scholar
  2. 2.
    Agarwal R, García AJ (2015) Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev 94:53–62PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C (2018) Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 180:143–162PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Calcei JG, Rodeo SA (2019) Orthobiologics for bone healing. Clin Sports Med 38(1):79–95PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11(5):18–25CrossRefGoogle Scholar
  6. 6.
    Roseti L, Parisi V, Petretta M, Cavallo C, Desando G, Bartolotti I, Grigolo B (2017) Scaffolds for bone tissue engineering: state of the art and new perspectives. Mater Sci Eng C 78:1246–1262CrossRefGoogle Scholar
  7. 7.
    Chan K, Zhuo S, Ni M (2013) Natural and synthetic peptide-based biomaterials for bone tissue engineering. OA Tissue Eng 1(1):6CrossRefGoogle Scholar
  8. 8.
    Nalla RK, Kruzic JJ, Kinney JH, Balooch M, Ager JW, Ritchie RO (2006) Role of microstructure in the aging-related deterioration of the toughness of human cortical bone. Mater Sci Eng C 26(8):1251–1260.  https://doi.org/10.1016/j.msec.2005.08.021CrossRefGoogle Scholar
  9. 9.
    Finkemeier CG (2002) Bone-grafting and bone-graft substitutes. JBJS 84(3):454–464CrossRefGoogle Scholar
  10. 10.
    Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36(3):S20–S27PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Pan P, Chen X, Metavarayuth K, Su J, Wang Q (2018) Self-assembled supramolecular systems for bone engineering applications. Curr Opin Colloid Interface Sci 35:104–111CrossRefGoogle Scholar
  12. 12.
    Rezwan K, Chen Q, Blaker J, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    LeGeros RZ (2008) Calcium phosphate-based osteoinductive materials. Chem Rev 108(11):4742–4753PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Rodrigues C, Serricella P, Linhares A, Guerdes R, Borojevic R, Rossi M, Duarte M, Farina M (2003) Characterization of a bovine collagen–hydroxyapatite composite scaffold for bone tissue engineering. Biomaterials 24(27):4987–4997PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Chen K-Y, Shyu P-C, Dong G-C, Chen Y-S, Kuo W-W, Yao C-H (2009) Reconstruction of calvarial defect using a tricalcium phosphate-oligomeric proanthocyanidins cross-linked gelatin composite. Biomaterials 30(9):1682–1688PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Yu X, Tang X, Gohil SV, Laurencin CT (2015) Biomaterials for bone regenerative engineering. Adv Healthc Mater 4(9):1268–1285PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Habibovic P, Yuan H, van der Valk CM, Meijer G, van Blitterswijk CA, de Groot K (2005) 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials 26(17):3565–3575PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Chai YC, Carlier A, Bolander J, Roberts SJ, Geris L, Schrooten J, Van Oosterwyck H, Luyten FP (2012) Current views on calcium phosphate osteogenicity and the translation into effective bone regeneration strategies. Acta Biomater 8(11):3876–3887PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Li X, Liu H, Niu X, Fan Y, Feng Q, Cui F z, Watari F (2011) Osteogenic differentiation of human adipose-derived stem cells induced by osteoinductive calcium phosphate ceramics. J Biomed Mater Res B Appl Biomater 97(1):10–19PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ripamonti U (2006) Soluble osteogenic molecular signals and the induction of bone formation. Biomaterials 27(6):807–822PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Barradas AM, Fernandes HA, Groen N, Chai YC, Schrooten J, van de Peppel J, van Leeuwen JP, van Blitterswijk CA, de Boer J (2012) A calcium-induced signaling cascade leading to osteogenic differentiation of human bone marrow-derived mesenchymal stromal cells. Biomaterials 33(11):3205–3215PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Liu H, Yazici H, Ergun C, Webster TJ, Bermek H (2008) An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration. Acta Biomater 4(5):1472–1479PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Breitwieser GE (2008) Extracellular calcium as an integrator of tissue function. Int J Biochem Cell Biol 40(8):1467–1480PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Murphy WL, Peters MC, Kohn DH, Mooney DJ (2000) Sustained release of vascular endothelial growth factor from mineralized poly (lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 21(24):2521–2527PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Krishnan L, Willett NJ, Guldberg RE (2014) Vascularization strategies for bone regeneration. Ann Biomed Eng 42(2):432–444PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Kanczler JM, Oreffo RO (2008) Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater 15(2):100–114PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Salbach-Hirsch J, Ziegler N, Thiele S, Moeller S, Schnabelrauch M, Hintze V, Scharnweber D, Rauner M, Hofbauer LC (2014) Sulfated glycosaminoglycans support osteoblast functions and concurrently suppress osteoclasts. J Cell Biochem 115(6):1101–1111PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Sun G, Zhang X, Shen Y-I, Sebastian R, Dickinson LE, Fox-Talbot K, Reinblatt M, Steenbergen C, Harmon JW, Gerecht S (2011) Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc Natl Acad Sci 108(52):20976–20981PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Jabbarzadeh E, Starnes T, Khan YM, Jiang T, Wirtel AJ, Deng M, Lv Q, Nair LS, Doty SB, Laurencin CT (2008) Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair: a combined gene therapy–cell transplantation approach. Proc Natl Acad Sci 105(32):11099–11104.  https://doi.org/10.1073/pnas.0800069105CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Unger RE, Peters K, Huang Q, Funk A, Paul D, Kirkpatrick CJ (2005) Vascularization and gene regulation of human endothelial cells growing on porous polyethersulfone (PES) hollow fiber membranes. Biomaterials 26:3461–3469.  https://doi.org/10.1016/J.BIOMATERIALS.2004.09.047CrossRefPubMedGoogle Scholar
  31. 31.
    Madden LR, Mortisen DJ, Sussman EM, Dupras SK, Fugate JA, Cuy JL, Hauch KD, Laflamme MA, Murry CE, Ratner BD (2010) Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci 107(34):15211–15216.  https://doi.org/10.1073/pnas.1006442107CrossRefPubMedGoogle Scholar
  32. 32.
    Zhai W, Lu H, Chen L, Lin X, Huang Y, Dai K, Naoki K, Chen G, Chang J (2012) Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater 8:341–349.  https://doi.org/10.1016/j.actbio.2011.09.008CrossRefPubMedGoogle Scholar
  33. 33.
    Rudra JS, Tian YF, Jung JP, Collier JH (2010) A self-assembling peptide acting as an immune adjuvant. Proc Natl Acad Sci 107(2):622–627PubMedCrossRefGoogle Scholar
  34. 34.
    Hubbell JA, Chilkoti A (2012) Nanomaterials for drug delivery. Science 337(6092):303–305.  https://doi.org/10.1126/science.1219657CrossRefPubMedGoogle Scholar
  35. 35.
    Pagel M, Beck-Sickinger AG (2017) Multifunctional biomaterial coatings: synthetic challenges and biological activity. Biol Chem 398(1):3–22PubMedCrossRefGoogle Scholar
  36. 36.
    Hintze V, Samsonov SA, Anselmi M, Moeller S, Becher J, Schnabelrauch M, Scharnweber D, Pisabarro MT (2014) Sulfated glycosaminoglycans exploit the conformational plasticity of bone morphogenetic protein-2 (BMP-2) and alter the interaction profile with its receptor. Biomacromolecules 15(8):3083–3092PubMedCrossRefGoogle Scholar
  37. 37.
    Liu T, Zeng Z, Liu Y, Wang J, Maitz MF, Wang Y, Liu S, Chen J, Huang N (2014) Surface modification with dopamine and heparin/poly-L-lysine nanoparticles provides a favorable release behavior for the healing of vascular stent lesions. ACS Appl Mater Interfaces 6(11):8729–8743PubMedCrossRefGoogle Scholar
  38. 38.
    Pagel M, Hassert R, John T, Braun K, Wießler M, Abel B, Beck-Sickinger AG (2016) Multifunctional coating improves cell adhesion on titanium by using cooperatively acting peptides. Angew Chem Int Ed 55(15):4826–4830CrossRefGoogle Scholar
  39. 39.
    Siebers MC, ter Brugge PJ, Walboomers XF, Jansen JA (2005) Integrins as linker proteins between osteoblasts and bone replacing materials. A critical review. Biomaterials 26(2):137–146.  https://doi.org/10.1016/j.biomaterials.2004.02.021CrossRefPubMedGoogle Scholar
  40. 40.
    Karadag A, Fisher LW (2006) Bone sialoprotein enhances migration of bone marrow stromal cells through matrices by bridging MMP-2 to αvβ3-integrin. J Bone Miner Res 21(10):1627–1636PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J (2009) TGF-β1–induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15(7):757PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Liu T, Liu S, Zhang K, Chen J, Huang N (2014) Endothelialization of implanted cardiovascular biomaterial surfaces: the development from in vitro to in vivo. J Biomed Mater Res A 102(10):3754–3772.  https://doi.org/10.1002/jbm.a.35025CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Eman RM, Öner FC, Kruyt MC, Dhert WJ, Alblas J (2013) Stromal cell-derived factor-1 stimulates cell recruitment, vascularization and osteogenic differentiation. Tissue Eng Part A 20(3–4):466–473PubMedPubMedCentralGoogle Scholar
  44. 44.
    Guo J, Liu M, Yang D, Bouxsein ML, Thomas CC, Schipani E, Bringhurst FR, Kronenberg HM (2010) Phospholipase C signaling via the parathyroid hormone (PTH)/PTH-related peptide receptor is essential for normal bone responses to PTH. Endocrinology 151(8):3502–3513.  https://doi.org/10.1210/en.2009-1494CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pountos I, Panteli M, Lampropoulos A, Jones E, Calori GM, Giannoudis PV (2016) The role of peptides in bone healing and regeneration: a systematic review. BMC Med 14(1):103PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Mitchell AC, Briquez PS, Hubbell JA, Cochran JR (2016) Engineering growth factors for regenerative medicine applications. Acta Biomater 30:1–12PubMedCrossRefGoogle Scholar
  47. 47.
    Visser R, Rico-Llanos GA, Pulkkinen H, Becerra J (2016) Peptides for bone tissue engineering. J Control Release 244:122–135PubMedCrossRefGoogle Scholar
  48. 48.
    Yi J, Xiong F, Li B, Chen H, Yin Y, Dai H, Li S (2016) Degradation characteristics, cell viability and host tissue responses of PDLLA-based scaffold with PRGD and β-TCP nanoparticles incorporation. Regen Biomater 3(3):159–166PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Punet X, Mauchauffé R, Rodríguez-Cabello JC, Alonso M, Engel E, Mateos-Timoneda MA (2015) Biomolecular functionalization for enhanced cell-material interactions of poly(methyl methacrylate) surfaces. Regen Biomater 2(3):167–175.  https://doi.org/10.1093/rb/rbv014CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rosso F, Giordano A, Barbarisi M, Barbarisi A (2004) From cell-ECM interactions to tissue engineering. J Cell Physiol 199(2):174–180PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Shekaran A, Garcia AJ (2011) Extracellular matrix-mimetic adhesive biomaterials for bone repair. J Biomed Mater Res A 96(1):261–272.  https://doi.org/10.1002/jbm.a.32979CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Fisher LW, Fedarko NS (2003) Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res 44(Suppl 1):33–40PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Bilem I, Chevallier P, Plawinski L, Sone E, Durrieu M, Laroche G (2016) RGD and BMP-2 mimetic peptide crosstalk enhances osteogenic commitment of human bone marrow stem cells. Acta Biomater 36:132–142PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Rezania A, Healy KE (2000) The effect of peptide surface density on mineralization of a matrix deposited by osteogenic cells. J Biomed Mater Res 52(4):595–600PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Reyes CD, García AJ (2004) α2β1 integrin-specific collagen-mimetic surfaces supporting osteoblastic differentiation. J Biomed Mater Res A 69(4):591–600PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Reyes CD, Petrie TA, Burns KL, Schwartz Z, García AJ (2007) Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials 28(21):3228–3235.  https://doi.org/10.1016/j.biomaterials.2007.04.003CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Gilbert M, Giachelli CM, Stayton PS (2003) Biomimetic peptides that engage specific integrin-dependent signaling pathways and bind to calcium phosphate surfaces. J Biomed Mater Res A 67(1):69–77PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hennessy KM, Pollot BE, Clem WC, Phipps MC, Sawyer AA, Culpepper BK, Bellis SL (2009) The effect of collagen I mimetic peptides on mesenchymal stem cell adhesion and differentiation, and on bone formation at hydroxyapatite surfaces. Biomaterials 30(10):1898–1909PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Nguyen H, Qian JJ, Bhatnagar RS, Li S (2003) Enhanced cell attachment and osteoblastic activity by P-15 peptide-coated matrix in hydrogels. Biochem Biophys Res Commun 311(1):179–186PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Hanks T, Atkinson BL (2004) Comparison of cell viability on anorganic bone matrix with or without P-15 cell binding peptide. Biomaterials 25(19):4831–4836PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Nakaoka R, Hirano Y, Mooney DJ, Tsuchiya T, Matsuoka A (2013) Study on the potential of RGD-and PHSRN-modified alginates as artificial extracellular matrices for engineering bone. J Artif Organs 16(3):284–293PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Frith JE, Mills RJ, Hudson JE, Cooper-White JJ (2012) Tailored integrin–extracellular matrix interactions to direct human mesenchymal stem cell differentiation. Stem Cells Dev 21(13):2442–2456PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Min S-K, Kang HK, Jang DH, Jung SY, Kim OB, Min B-M, Yeo I-S (2013) Titanium surface coating with a laminin-derived functional peptide promotes bone cell adhesion. Biomed Res Int 2013:638348PubMedPubMedCentralGoogle Scholar
  64. 64.
    Shin H, Zygourakis K, Farach-Carson MC, Yaszemski MJ, Mikos AG (2004) Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides. J Biomed Mater Res A 69(3):535–543PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Palchesko RN, Romeo JD, McGowan KA, Gawalt ES (2012) Increased osteoblast adhesion on physically optimized KRSR modified calcium aluminate. J Biomed Mater Res A 100(5):1229–1238PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Rezania A, Healy KE (1999) Biomimetic peptide surfaces that regulate adhesion, spreading, cytoskeletal organization, and mineralization of the matrix deposited by osteoblast-like cells. Biotechnol Prog 15(1):19–32PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Choi YJ, Lee JY, Park JH, Park JB, Suh JS, Choi YS, Lee SJ, Chung CP, Park YJ (2010) The identification of a heparin binding domain peptide from bone morphogenetic protein-4 and its role on osteogenesis. Biomaterials 31(28):7226–7238.  https://doi.org/10.1016/j.biomaterials.2010.05.022CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sprowson AP, McCaskie AW, Birch MA (2008) ASARM-truncated MEPE and AC-100 enhance osteogenesis by promoting osteoprogenitor adhesion. J Orthop Res 26(9):1256–1262PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Fromigué O, Brun J, Marty C, Da Nascimento S, Sonnet P, Marie PJ (2012) Peptide-based activation of alpha5 integrin for promoting osteogenesis. J Cell Biochem 113(9):3029–3038PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Gandavarapu NR, Alge DL, Anseth KS (2014) Osteogenic differentiation of human mesenchymal stem cells on α5 integrin binding peptide hydrogels is dependent on substrate elasticity. Biomater Sci 2(3):352–361PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Hamada Y, Yuki K, Okazaki M, Fujitani W, Matsumoto T, Hashida MK, Harutsugu K, Nokihara K, Daito M, Matsuura N (2004) Osteopontin-derived peptide SVVYGLR induces angiogenesis in vivo. Dent Mater J 23(4):650–655PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Hamada Y, Egusa H, Kaneda Y, Hirata I, Kawaguchi N, Hirao T, Matsumoto T, Yao M, Daito K, Suzuki M (2007) Synthetic osteopontin-derived peptide SVVYGLR can induce neovascularization in artificial bone marrow scaffold biomaterials. Dent Mater J 26(4):487–492PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Van Hove AH, Burke K, Antonienko E, Brown E III, Benoit DS (2015) Enzymatically-responsive pro-angiogenic peptide-releasing poly (ethylene glycol) hydrogels promote vascularization in vivo. J Control Release 217:191–201PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kang H-M, Kang Y, Chun HJ, Jeong J-W, Park C (2013) Evaluation of the in vitro and in vivo angiogenic effects of exendin-4. Biochem Biophys Res Commun 434(1):150–154PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Norfleet AM, Bergmann JS, Carney DH (2000) Thrombin peptide, TP508, stimulates angiogenic responses in animal models of dermal wound healing, in chick chorioallantoic membranes, and in cultured human aortic and microvascular endothelial cells. Gen Pharmacol 35(5):249–254PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Olszewska-Pazdrak B, Carney DH (2013) Systemic administration of thrombin peptide TP508 enhances VEGF-stimulated angiogenesis and attenuates effects of chronic hypoxia. J Vasc Res 50(3):186–196PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Santulli G, Ciccarelli M, Palumbo G, Campanile A, Galasso G, Ziaco B, Altobelli GG, Cimini V, Piscione F, D’Andrea LD (2009) In vivo properties of the proangiogenic peptide QK. J Transl Med 7(1):41PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Hardy B, Battler A, Weiss C, Kudasi O, Raiter A (2008) Therapeutic angiogenesis of mouse hind limb ischemia by novel peptide activating GRP78 receptor on endothelial cells. Biochem Pharmacol 75(4):891–899PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Lin X, Takahashi K, Liu Y, Derrien A, Zamora PO (2007) A synthetic, bioactive PDGF mimetic with binding to both α-PDGF and β-PDGF receptors. Growth Factors 25(2):87–93PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Suzuki Y, Tanihara M, Suzuki K, Saitou A, Sufan W, Nishimura Y (2000) Alginate hydrogel linked with synthetic oligopeptide derived from BMP-2 allows ectopic osteoinduction in vivo. J Biomed Mater Res 50(3):405–409.  https://doi.org/10.1002/(sici)1097-4636(20000605)50:3<405::Aid-jbm15>3.0.Co;2-zCrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    He X, Yang X, Jabbari E (2012) Combined effect of osteopontin and BMP-2 derived peptides grafted to an adhesive hydrogel on osteogenic and vasculogenic differentiation of marrow stromal cells. Langmuir 28(12):5387–5397.  https://doi.org/10.1021/la205005hCrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Niu X, Feng Q, Wang M, Guo X, Zheng Q (2009) Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2. J Control Release 134(2):111–117PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Bergeron E, Senta H, Mailloux A, Park H, Lord E, Faucheux N (2009) Murine preosteoblast differentiation induced by a peptide derived from bone morphogenetic proteins-9. Tissue Eng Part A 15(11):3341–3349PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Zouani OF, Chollet C, Guillotin B, Durrieu M-C (2010) Differentiation of pre-osteoblast cells on poly (ethylene terephthalate) grafted with RGD and/or BMPs mimetic peptides. Biomaterials 31(32):8245–8253PubMedCrossRefGoogle Scholar
  85. 85.
    Seol YJ, Park YJ, Lee SC, Kim KH, Lee JY, Kim TI, Lee YM, Ku Y, Rhyu IC, Han SB (2006) Enhanced osteogenic promotion around dental implants with synthetic binding motif mimicking bone morphogenetic protein (BMP)-2. J Biomed Mater Res A 77(3):599–607PubMedCrossRefGoogle Scholar
  86. 86.
    Jung RE, Hämmerle CH, Kokovic V, Weber FE (2007) Bone regeneration using a synthetic matrix containing a parathyroid hormone peptide combined with a grafting material. Int J Oral Maxillofac Implants 22(2):258–266PubMedGoogle Scholar
  87. 87.
    Pigossi SC, de Oliveira GJ, Finoti LS, Nepomuceno R, Spolidorio LC, Rossa C Jr, Ribeiro SJ, Saska S, Scarel-Caminaga RM (2015) Bacterial cellulose-hydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in critical-size calvarial defect model. J Biomed Mater Res A 103(10):3397–3406PubMedCrossRefGoogle Scholar
  88. 88.
    Xu G, Jiang D (2014) The role and mechanism of exogenous calcitonin gene-related peptide on mesenchymal stem cell proliferation and osteogenetic formation. Cell Biochem Biophys 69(2):369–378PubMedCrossRefGoogle Scholar
  89. 89.
    Millet I, Vignery A (1997) The neuropeptide calcitonin gene-related peptide inhibits TNF-α but poorly induces IL-6 production by fetal rat osteoblasts. Cytokine 9(12):999–1007PubMedCrossRefGoogle Scholar
  90. 90.
    Choi YJ, Lee JY, Chung CP, Park YJ (2013) Enhanced osteogenesis by collagen-binding peptide from bone sialoprotein in vitro and in vivo. J Biomed Mater Res A 101(2):547–554PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Lee J-Y, Choo J-E, Choi Y-S, Park J-B, Min D-S, Lee S-J, Rhyu HK, Jo I-H, Chung C-P, Park Y-J (2007) Assembly of collagen-binding peptide with collagen as a bioactive scaffold for osteogenesis in vitro and in vivo. Biomaterials 28(29):4257–4267PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Goto T, Nakao K, Gunjigake K, Kido M, Kobayashi S, Tanaka T (2007) Substance P stimulates late-stage rat osteoblastic bone formation through neurokinin-1 receptors. Neuropeptides 41(1):25–31PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Wang L, Zhao R, Shi X, Wei T, Halloran BP, Clark DJ, Jacobs CR, Kingery WS (2009) Substance P stimulates bone marrow stromal cell osteogenic activity, osteoclast differentiation, and resorption activity in vitro. Bone 45(2):309–320PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Von Schroeder H, Veillette C, Payandeh J, Qureshi A, Heersche J (2003) Endothelin-1 promotes osteoprogenitor proliferation and differentiation in fetal rat calvarial cell cultures. Bone 33(4):673–684CrossRefGoogle Scholar
  95. 95.
    Tsai T-L, Wang B, Squire MW, Guo L-W, Li W-J (2015) Endothelial cells direct human mesenchymal stem cells for osteo- and chondro-lineage differentiation through endothelin-1 and AKT signaling. Stem Cell Res Ther 6(1):88PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Clines GA, Mohammad KS, Grunda JM, Clines KL, Niewolna M, McKenna CR, McKibbin CR, Yanagisawa M, Suva LJ, Chirgwin JM (2011) Regulation of postnatal trabecular bone formation by the osteoblast endothelin A receptor. J Bone Miner Res 26(10):2523–2536PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Wang V, Misra G, Amsden B (2008) Immobilization of a bone and cartilage stimulating peptide to a synthetic bone graft. J Mater Sci Mater Med 19(5):2145–2155PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Agrawal V, Tottey S, Johnson SA, Freund JM, Siu BF, Badylak SF (2011) Recruitment of progenitor cells by an extracellular matrix cryptic peptide in a mouse model of digit amputation. Tissue Eng Part A 17(19–20):2435–2443PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Collier JH, Segura T (2011) Evolving the use of peptides as components of biomaterials. Biomaterials 32(18):4198–4204PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849):426–430.  https://doi.org/10.1126/science.1147241CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Patterson J, Hubbell JA (2011) SPARC-derived protease substrates to enhance the plasmin sensitivity of molecularly engineered PEG hydrogels. Biomaterials 32(5):1301–1310PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Tokatlian T, Shrum CT, Kadoya WM, Segura T (2010) Protease degradable tethers for controlled and cell-mediated release of nanoparticles in 2- and 3-dimensions. Biomaterials 31(31):8072–8080PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Maynard HD, Hubbell JA (2005) Discovery of a sulfated tetrapeptide that binds to vascular endothelial growth factor. Acta Biomater 1(4):451–459PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Kim SH, Kiick KL (2007) Heparin-mimetic sulfated peptides with modulated affinities for heparin-binding peptides and growth factors. Peptides 28(11):2125–2136PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Cui H, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Pept Sci 94(1):1–18CrossRefGoogle Scholar
  106. 106.
    Zhou M, Smith AM, Das AK, Hodson NW, Collins RF et al (2009) Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells. Biomaterials 30(13):2523–2530PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Woolfson DN, Mahmoud ZN (2010) More than just bare scaffolds: towards multi-component and decorated fibrous biomaterials. Chem Soc Rev 39(9):3464–3479PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Rajagopal K, Lamm MS, Haines-Butterick LA, Pochan DJ, Schneider JP (2009) Tuning the pH responsiveness of β-hairpin peptide folding, self-assembly, and hydrogel material formation. Biomacromolecules 10(9):2619–2625PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Jung JP, Gasiorowski JZ, Collier JH (2010) Fibrillar peptide gels in biotechnology and biomedicine. Pept Sci 94(1):49–59CrossRefGoogle Scholar
  110. 110.
    Khatayevich D, Gungormus M, Yazici H, So C, Cetinel S, Ma H, Jen A, Tamerler C, Sarikaya M (2010) Biofunctionalization of materials for implants using engineered peptides. Acta Biomater 6(12):4634–4641PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Mas-Moruno C, Rechenmacher F, Kessler H (2010) Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation. Anticancer Agents Med Chem 10(10):753–768PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Rabe M, Verdes D, Seeger S (2011) Understanding protein adsorption phenomena at solid surfaces. Adv Colloid Interf Sci 162(1–2):87–106CrossRefGoogle Scholar
  113. 113.
    Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8(6):1775–1789PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Gray JJ (2004) The interaction of proteins with solid surfaces. Curr Opin Struct Biol 14(1):110–115PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Nakanishi K, Sakiyama T, Imamura K (2001) On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng 91(3):233–244PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Chen C, Zhang S-M, Lee I-S (2013) Immobilizing bioactive molecules onto titanium implants to improve osseointegration. Surf Coat Technol 228:S312–S317CrossRefGoogle Scholar
  117. 117.
    Hajimiri M, Shahverdi S, Kamalinia G, Dinarvand R (2015) Growth factor conjugation: strategies and applications. J Biomed Mater Res A 103(2):819–838PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Chiu LL, Weisel RD, Li RK, Radisic M (2011) Defining conditions for covalent immobilization of angiogenic growth factors onto scaffolds for tissue engineering. J Tissue Eng Regen Med 5(1):69–84PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Liu L, Deng D, Xing Y, Li S, Yuan B, Chen J, Xia N (2013) Activity analysis of the carbodiimide-mediated amine coupling reaction on self-assembled monolayers by cyclic voltammetry. Electrochim Acta 89:616–622CrossRefGoogle Scholar
  120. 120.
    Aissaoui N, Bergaoui L, Landoulsi J, Lambert J-F, Boujday S (2011) Silane layers on silicon surfaces: mechanism of interaction, stability, and influence on protein adsorption. Langmuir 28(1):656–665PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed Engl 40(11):2004–2021PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Tang L, Thevenot P, Hu W (2008) Surface chemistry influences implant biocompatibility. Curr Top Med Chem 8(4):270–280PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Yazici H, Fong H, Wilson B, Oren E, Amos F, Zhang H, Evans J, Snead M, Sarikaya M, Tamerler C (2013) Biological response on a titanium implant-grade surface functionalized with modular peptides. Acta Biomater 9(2):5341–5352PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Sarikaya M, Tamerler C, Jen AK-Y, Schulten K, Baneyx F (2003) Molecular biomimetics: nanotechnology through biology. Nat Mater 2(9):577PubMedCrossRefGoogle Scholar
  125. 125.
    Sarikaya M, Tamerler C, Schwartz DT, Baneyx F (2004) Materials assembly and formation using engineered polypeptides. Annu Rev Mater Res 34:373–408CrossRefGoogle Scholar
  126. 126.
    Mayer G, Sarikaya M (2002) Rigid biological composite materials: structural examples for biomimetic design. Exp Mech 42(4):395–403CrossRefGoogle Scholar
  127. 127.
    Sakiyama-Elbert S, Hubbell J (2001) Functional biomaterials: design of novel biomaterials. Annu Rev Mater Res 31(1):183–201CrossRefGoogle Scholar
  128. 128.
    Yazici H, Habib G, Boone K, Urgen M, Utku FS, Tamerler C (2019) Self-assembling antimicrobial peptides on nanotubular titanium surfaces coated with calcium phosphate for local therapy. Mater Sci Eng C 94:333–343CrossRefGoogle Scholar
  129. 129.
    Yazici H, O’Neill MB, Kacar T, Wilson BR, Oren EE, Sarikaya M, Tamerler C (2016) Engineered chimeric peptides as antimicrobial surface coating agents toward infection-free implants. ACS Appl Mater Interfaces 8(8):5070–5081PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    So CR, Hayamizu Y, Yazici H, Gresswell C, Khatayevich D, Tamerler C, Sarikaya M (2012) Controlling self-assembly of engineered peptides on graphite by rational mutation. ACS Nano 6(2):1648–1656PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Shiba K (2010) Exploitation of peptide motif sequences and their use in nanobiotechnology. Curr Opin Biotechnol 21(4):412–425PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Donatan S, Yazici H, Bermek H, Sarikaya M, Tamerler C, Urgen M (2009) Physical elution in phage display selection of inorganic-binding peptides. Mater Sci Eng C 29(1):14–19CrossRefGoogle Scholar
  133. 133.
    Hnilova M, Oren EE, Seker UO, Wilson BR, Collino S, Evans JS, Tamerler C, Sarikaya M (2008) Effect of molecular conformations on the adsorption behavior of gold-binding peptides. Langmuir 24(21):12440–12445PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Sano K-I, Shiba K (2003) A hexapeptide motif that electrostatically binds to the surface of titanium. J Am Chem Soc 125(47):14234–14235PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Naik RR, Brott LL, Clarson SJ, Stone MO (2002) Silica-precipitating peptides isolated from a combinatorial phage display peptide library. J Nanosci Nanotechnol 2(1):95–100PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Ajikumar PK, Vivekanandan S, Lakshminarayanan R, Jois SD, Kini RM, Valiyaveettil S (2005) Mimicking the function of eggshell matrix proteins: the role of multiplets of charged amino acid residues and self-assembly of peptides in biomineralization. Angew Chem Int Ed 44(34):5476–5479CrossRefGoogle Scholar
  137. 137.
    Gungormus M, Oren EE, Horst JA, Fong H, Hnilova M, Somerman MJ, Snead ML, Samudrala R, Tamerler C, Sarikaya M (2012) Cementomimetics—constructing a cementum-like biomineralized microlayer via amelogenin-derived peptides. Int J Oral Sci 4(2):69PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Gungormus M, Fong H, Kim IW, Evans JS, Tamerler C, Sarikaya M (2008) Regulation of in vitro calcium phosphate mineralization by combinatorially selected hydroxyapatite-binding peptides. Biomacromolecules 9(3):966–973PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Loo Y, Goktas M, Tekinay AB, Guler MO, Hauser CA, Mitraki A (2015) Self-assembled proteins and peptides as scaffolds for tissue regeneration. Adv Healthc Mater 4(16):2557–2586PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Matson JB, Zha RH, Stupp SI (2011) Peptide self-assembly for crafting functional biological materials. Curr Opinion Solid State Mater Sci 15(6):225–235CrossRefGoogle Scholar
  141. 141.
    He B, Zhao J, Ou Y, Jiang D (2018) Biofunctionalized peptide nanofiber-based composite scaffolds for bone regeneration. Mater Sci Eng C 90:728–738CrossRefGoogle Scholar
  142. 142.
    Holmes TC (2002) Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol 20(1):16–21PubMedCrossRefGoogle Scholar
  143. 143.
    Gelain F, Horii A, Zhang S (2007) Designer self-assembling peptide scaffolds for 3-D tissue cell cultures and regenerative medicine. Macromol Biosci 7(5):544–551PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Stupp SI (2010) Self-assembly and biomaterials. Nano Lett 10(12):4783–4786PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Wu EC, Zhang S, Hauser CAE (2012) Self-assembling peptides as cell-interactive scaffolds. Adv Funct Mater 22(3):456–468.  https://doi.org/10.1002/adfm.201101905CrossRefGoogle Scholar
  146. 146.
    Schachner M (2000) Neurobiology. Nervous engineering. Nature 405(6788):747–748.  https://doi.org/10.1038/35015648CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Aggeli A, Bell M, Boden N, Keen JN, Knowles PF, McLeish TC, Pitkeathly M, Radford SE (1997) Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature 386(6622):259–262.  https://doi.org/10.1038/386259a0CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    West MW, Wang W, Patterson J, Mancias JD, Beasley JR, Hecht MH (1999) De novo amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci U S A 96(20):11211–11216.  https://doi.org/10.1073/pnas.96.20.11211CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Xiong H, Buckwalter BL, Shieh HM, Hecht MH (1995) Periodicity of polar and nonpolar amino acids is the major determinant of secondary structure in self-assembling oligomeric peptides. Proc Natl Acad Sci U S A 92(14):6349–6353.  https://doi.org/10.1073/pnas.92.14.6349CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Lashuel HA, Labrenz SR, Woo L, Serpell LC, Kelly JW (2000) Protofilaments, filaments, ribbons, and fibrils from peptidomimetic self-assembly: implications for amyloid fibril formation and materials science. J Am Chem Soc 122(22):5262–5277.  https://doi.org/10.1021/ja9937831CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Prieto AL, Edelman GM, Crossin KL (1993) Multiple integrins mediate cell attachment to cytotactin/tenascin. Proc Natl Acad Sci U S A 90(21):10154–10158.  https://doi.org/10.1073/pnas.90.21.10154CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16(18):1385–1393PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Abdullah Karadag
    • 1
  • Hana’a Iqbal
    • 1
    • 2
  • Hilal Yazici
    • 1
    Email author
  1. 1.TUBITAK-Marmara Research Center, Genetic Engineering and Biotechnology InstituteKocaeliTurkey
  2. 2.Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of KarachiKarachiPakistan

Personalised recommendations