Additive Manufacturing of Bioscaffolds for Bone Regeneration

  • Osama Almayyahi
  • Irsalan CockerillEmail author
  • Yufeng Zheng
  • Donghui Zhu


As technology and computer applications reach new strides every day, the biomedical field is benefiting from this advancement and that includes the production of bioscaffolds for tissue engineering and bone regeneration. Even though the body is capable of healing minor injuries, some injuries might prove too challenging for the body to repair and that is where additive manufacturing (AM) comes in. This chapter discusses the primary materials as well as the major and mainstream methods used in AM of bioscaffolds for bone regeneration. In addition, new advancements in Computer-Aided Design (CAD) and three-Dimensional (3D) designs in AM are addressed. The benefits and drawbacks of different methods used in AM for bone scaffolds and their suitability for human trials and further applications on patients are also discussed.


Bioscaffold Tissue engineering Bone regeneration Additive manufacturing Bone graft 


  1. 1.
    Laurencin C, Khan Y, El-Amin S (2006) Bone graft substitutes. Expert Rev Med Devices 3(1):49–57CrossRefGoogle Scholar
  2. 2.
    Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, Choong PF, Schuetz MA, Hutmacher DWJBr (2013) Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res 1(3):216–248CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Greenwald AS, Boden SD, Goldberg VM, Khan Y, Laurencin CT, Rosier RNJJ (2001) Bone-graft substitutes: facts, fictions, and applications. J Bone Joint Surg Am 83:98–103CrossRefGoogle Scholar
  4. 4.
    Porter B, Oldham J, He S, Zobitz M, Payne R, An K, Currier B, Mikos A, Yaszemski MJ (2000) Mechanical properties of a biodegradable bone regeneration scaffold. J Biomech Eng 122(3):286–288CrossRefGoogle Scholar
  5. 5.
    Mikos AG, Temenoff JS (2000) Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol 3(2):23–24CrossRefGoogle Scholar
  6. 6.
    Marks SC Jr, Popoff SN (1988) Bone cell biology: the regulation of development, structure, and function in the skeleton. Am J Anat 183(1):1–44CrossRefGoogle Scholar
  7. 7.
    Rho J-Y, Kuhn-Spearing L, Zioupos P (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20(2):92–102CrossRefGoogle Scholar
  8. 8.
    Sikavitsas VI, Temenoff JS, Mikos AG (2001) Biomaterials and bone mechanotransduction. Biomaterials 22(19):2581–2593CrossRefGoogle Scholar
  9. 9.
    Goldstein SA (1987) The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech 20(11–12):1055–1061CrossRefGoogle Scholar
  10. 10.
    Mohan S, Baylink DJ (1991) Bone growth factors. Clin Orthop Relat Res (263):30–48Google Scholar
  11. 11.
    Jones G, Nguyen T, Sambrook P, Kelly P, Eisman JJB (1994) Progressive loss of bone in the femoral neck in elderly people: longitudinal findings from the Dubbo osteoporosis epidemiology study. BMJ 309(6956):691–695CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Teitelbaum SL (2000) Bone resorption by osteoclasts. Science 289(5484):1504–1508CrossRefGoogle Scholar
  13. 13.
    Rodan GA, Martin TJ (1981) Role of osteoblasts in hormonal control of bone resorption—a hypothesis. Calcif Tissue Int 33(4):349–351CrossRefGoogle Scholar
  14. 14.
    Teitelbaum SL (2007) Osteoclasts: what do they do and how do they do it? Am J Pathol 170(2):427–435CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hadjidakis DJ, Androulakis II (2006) Bone remodeling. Ann N Y Acad Sci 1092(1):385–396CrossRefGoogle Scholar
  16. 16.
    Mueller BJ (2012) Additive manufacturing technologies–rapid prototyping to direct digital manufacturing. Assemb Autom 32(2)Google Scholar
  17. 17.
    Wohlers T, Gornet T (2014) History of additive manufacturing. In: Wohlers report 2014—3D printing and additive manufacturing state of the industry, vol 24. Cambridge University Press, Cambridge, p 118Google Scholar
  18. 18.
    Wong KV, Hernandez A (2012) A review of additive manufacturing. ISRN Mech Eng 2012:208760CrossRefGoogle Scholar
  19. 19.
    Delloye C, Cornu O, Druez V, Barbier O (2007) Bone allografts: what they can offer and what they cannot. J Bone Joint Surg Br 89(5):574–580CrossRefGoogle Scholar
  20. 20.
    Melchels FP, Domingos MA, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW (2012) Additive manufacturing of tissues and organs. Prog Polym Sci 37(8):1079–1104Google Scholar
  21. 21.
    Yavari SA, van der Stok J, Chai YC, Wauthle R, Birgani ZT, Habibovic P, Mulier M, Schrooten J, Weinans H, Zadpoor AAJB (2014) Bone regeneration performance of surface-treated porous titanium. Biomaterials 35(24):6172–6181Google Scholar
  22. 22.
    Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Schieker M, Seitz H (2005) Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med 16(12):1121–1124CrossRefGoogle Scholar
  23. 23.
    Hu Q, Yang H, Yao Y (2007) A software method to model and fabricate the defective bone repair bioscaffold using in tissue engineering. In: International conference on life system modeling and simulation. Springer, New York, pp 445–452CrossRefGoogle Scholar
  24. 24.
    Ducheyne P, Qiu QJB (1999) Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20(23–24):2287–2303CrossRefGoogle Scholar
  25. 25.
    Vallet-Regí M, Ruiz-Hernández EJAM (2011) Bioceramics: from bone regeneration to cancer nanomedicine. Adv Mater 23(44):5177–5218CrossRefGoogle Scholar
  26. 26.
    Cooper D, Matyas J, Katzenberg M, Hallgrimsson B (2004) Comparison of microcomputed tomographic and microradiographic measurements of cortical bone porosity. Calcif Tissue Int 74(5):437–447CrossRefGoogle Scholar
  27. 27.
    Ginebra M (2008) Calcium phosphate bone cements. Orthopaedic bone cements. Elsevier, Amsterdam, pp 206–230CrossRefGoogle Scholar
  28. 28.
    Yuan H, Kurashina K, de Bruijn JD, Li Y, De Groot K, Zhang X (1999) A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials 20(19):1799–1806CrossRefGoogle Scholar
  29. 29.
    Vallet-Regí M, González-Calbet JM (2004) Calcium phosphates as substitution of bone tissues. Prog Solid State Chem 32(1–2):1–31CrossRefGoogle Scholar
  30. 30.
    Anselme KJB (2000) Osteoblast adhesion on biomaterials. Biomaterials 21(7):667–681CrossRefGoogle Scholar
  31. 31.
    Hench LL, Splinter RJ, Allen W, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5(6):117–141CrossRefGoogle Scholar
  32. 32.
    Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    El-Ghannam A, Ducheyne P, Shapiro M (1999) Effect of serum proteins on osteoblast adhesion to surface‐modified bioactive glass and hydroxyapatite. J Orthop Res 17(3):340–345CrossRefGoogle Scholar
  34. 34.
    Gotman I (1997) Characteristics of metals used in implants. J Endourol 11(6):383–389CrossRefGoogle Scholar
  35. 35.
    Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141CrossRefGoogle Scholar
  36. 36.
    Hermawan H (2012) Biodegradable metals: state of the art. Biodegradable metals. Springer, Berlin, pp 13–22CrossRefGoogle Scholar
  37. 37.
    Peuster M, Hesse C, Schloo T, Fink C, Beerbaum P, von Schnakenburg C (2006) Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27(28):4955–4962CrossRefGoogle Scholar
  38. 38.
    Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE (2014) Scaffold design for bone regeneration. J Nanosci Nanotechnol 14(1):15–56CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Bobe K, Willbold E, Morgenthal I, Andersen O, Studnitzky T, Nellesen J, Tillmann W, Vogt C, Vano K, Witte F (2013) In vitro and in vivo evaluation of biodegradable, open-porous scaffolds made of sintered magnesium W4 short fibres. Acta Biomater 9(10):8611–8623CrossRefGoogle Scholar
  40. 40.
    Gunatillake P, Mayadunne R, Adhikari R (2006) Recent developments in biodegradable synthetic polymers. Biotechnol Annu Rev 12:301–347CrossRefGoogle Scholar
  41. 41.
    Hollinger JO (1983) Preliminary report on the osteogenic potential of a biodegradable copolymer of polyactide (PLA) and polyglycolide (PGA). J Biomed Mater Res 17(1):71–82CrossRefGoogle Scholar
  42. 42.
    Andriano K, Tabata Y, Ikada Y, Heller J (1999) In vitro and in vivo comparison of bulk and surface hydrolysis in absorbable polymer scaffolds for tissue engineering. J Biomed Mater Res 48(5):602–612CrossRefGoogle Scholar
  43. 43.
    Muggli DS, Burkoth AK, Keyser SA, Lee HR, Anseth KS (1998) Reaction behavior of biodegradable, photo-cross-linkable polyanhydrides. Macromolecules 31(13):4120–4125CrossRefGoogle Scholar
  44. 44.
    Hélary G, Noirclère F, Mayingi J, Migonney V (2009) A new approach to graft bioactive polymer on titanium implants: improvement of MG 63 cell differentiation onto this coating. Acta Biomater 5(1):124–133CrossRefGoogle Scholar
  45. 45.
    Oughlis S, Lessim S, Changotade S, Poirier F, Bollotte F, Peltzer J, Felgueiras H, Migonney V, Lataillade JJ, Lutomski D (2013) The osteogenic differentiation improvement of human mesenchymal stem cells on titanium grafted with polyNaSS bioactive polymer. J Biomed Mater Res A 101(2):582–589CrossRefGoogle Scholar
  46. 46.
    Zorn G, Baio JE, Weidner T, Migonney V, Castner DG (2011) Characterization of poly(sodium styrene sulfonate) thin films grafted from functionalized titanium surfaces. Langmuir 27(21):13104–13112CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Geng F, Tan LL, Jin XX, Yang JY, Yang K (2009) The preparation, cytocompatibility, and in vitro biodegradation study of pure β-TCP on magnesium. J Mater Sci Mater Med 20(5):1149–1157CrossRefGoogle Scholar
  48. 48.
    Chen Z, Mao X, Tan L, Friis T, Wu C, Crawford R, Xiao Y (2014) Osteoimmunomodulatory properties of magnesium scaffolds coated with β-tricalcium phosphate. Biomaterials 35(30):8553–8565CrossRefGoogle Scholar
  49. 49.
    Jasmawati N, Fatihhi S, Putra A, Syahrom A, Harun M, Öchsner A, Kadir MRA (2017) Mg-based porous metals as cancellous bone analogous material: a review. Proc Inst Mech Eng Part L: J Mater Des Appl 231(6):544–556Google Scholar
  50. 50.
    Mota C, Puppi D, Chiellini F, Chiellini E (2015) Additive manufacturing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med 9(3):174–190CrossRefGoogle Scholar
  51. 51.
    Holck DE, Boyd EM Jr, Ng J, Mauffray RO (1999) Benefits of stereolithography in orbital reconstruction. Ophthalmology 106(6):1214–1218CrossRefGoogle Scholar
  52. 52.
    Arcaute K, Mann B, Wicker RB (2006) Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng 34(9):1429–1441CrossRefGoogle Scholar
  53. 53.
    Shirazi SFS, Gharehkhani S, Mehrali M, Yarmand H, Metselaar HSC, Adib Kadri N, Osman NAA (2015) A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater 16(3):033502Google Scholar
  54. 54.
    Stevens B, Yang Y, Mohandas A, Stucker B, Nguyen KT (2008) A review of materials, fabrication methods, and strategies used to enhance bone regeneration in engineered bone tissues. J Biomed Mater Res B Appl Biomater 85(2):573–582CrossRefGoogle Scholar
  55. 55.
    Cruz F, Simoes J, Coole T, Bocking C (2005) Direct manufacture of hydroxyapatite based bone implants by selective laser sintering. In: Proceedings of the VRAP 2005, Leiria, Portugal, pp 119–126Google Scholar
  56. 56.
    Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das SJB (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827CrossRefGoogle Scholar
  57. 57.
    Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW et al (2010) Acta Biomater 6(12):4495–4505CrossRefGoogle Scholar
  58. 58.
    Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, Kates SL, Awad HA (2014) 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 35(13):4026–4034CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23(4):1169–1185CrossRefGoogle Scholar
  60. 60.
    Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55(2):203–216CrossRefGoogle Scholar
  61. 61.
    Kalita SJ, Bose S, Hosick HL, Bandyopadhyay A (2003) Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling. Mater Sci Eng C 23(5):611–620CrossRefGoogle Scholar
  62. 62.
    Stępien E (2011) Acceleration of new biomarkers development and discovery in synergistic diagnostics of coronary artery disease. In: Coronary angiography—advances in noninvasive imaging approach for evaluation of coronary artery disease. InTech, LondonGoogle Scholar
  63. 63.
    Rosy Setiawati PR (2018) Bone development and growth. IntechOpen, LondonGoogle Scholar
  64. 64.
    Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Polymers for 3D printing and customized additive manufacturing. Chem Rev 117(15):10212–10290CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Li Z, Siklos M, Pucher N, Cicha K, Ajami A, Husinsky W, Rosspeintner A, Vauthey E, Gescheidt G, Stampfl J, Liska R (2011) Synthesis and structure-activity relationship of several aromatic ketone-based two-photon initiators. J Polym Sci A 49(17):3688–3699CrossRefGoogle Scholar
  66. 66.
    Torgersen J (2013) Novel Biocompatible Materials for in Vivo Two-Photon Polymerisation. Technische Universität Wien, WienGoogle Scholar
  67. 67.
    Ovsianikov A, Chichkov B, Mente P, Monteiro-Riviere NA, Doraiswamy A, Narayan RJ (2007) Two photon polymerization of polymer–ceramic hybrid materials for transdermal drug delivery. Int J Appl Ceram Technol 4(1):22–29CrossRefGoogle Scholar
  68. 68.
    Medical: FHC—EOS technology for manufacturing of stereotactic platforms for neurosurgery. Accessed 2 Mar 2019Google Scholar
  69. 69.
    Zhang J, Zhao S, Zhu Y, Huang Y, Zhu M, Tao C, Zhang C (2014) Three-dimensional printing of strontium-containing mesoporous bioactive glass scaffolds for bone regeneration. Acta Biomater 10(5):2269–2281CrossRefGoogle Scholar
  70. 70.
    Baino F, Hamzehlou S, Kargozar S (2018) Bioactive glasses: where are we and where are we going? J Funct Biomater 9(1):25CrossRefGoogle Scholar
  71. 71.
    Murr LE, Gaytan SM, Medina F, Lopez H, Martinez E, Machado BI, Hernandez DH, Martinez L, Lopez MI, Wicker RB, Bracke J (2010) Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos Trans A Math Phys Eng Sci 368(1917):1999–2032CrossRefGoogle Scholar
  72. 72.
    Wong KC, Kumta SM, Geel NV, Demol J (2015) One-step reconstruction with a 3D-printed, biomechanically evaluated custom implant after complex pelvic tumor resection. Comput Aided Surg 20(1):14–23CrossRefGoogle Scholar
  73. 73.
    enbin Luo LH, He L, Wenrui Q, Zhao X, Wang C, Li C, Tao Y, Han Q, Wang J, Qin Y (2017) Customized knee prosthesis in treatment of giant cell tumors of the proximal tibia: application of 3-dimensional printing technology in surgical design. Med Sci Monit 23:1691–1700CrossRefGoogle Scholar
  74. 74.
    Gao C, Wang C, Jin H, Wang Z, Li Z, Shi C, Leng Y, Yang F, Liu H, Wang J (2018) Additive manufacturing techniques designed metallic porous implant for clinical application in orthopedics. RSC Adv 8(44)Google Scholar
  75. 75.
    Rider P, Kačarević ŽP, Alkildani S, Retnasingh S, Schnettler R, Barbeck M (2018) Additive manufacturing for guided bone regeneration: a perspective for alveolar ridge augmentation. Int J Mol Sci 19(11):3308CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Osama Almayyahi
    • 1
  • Irsalan Cockerill
    • 1
    Email author
  • Yufeng Zheng
    • 2
  • Donghui Zhu
    • 3
  1. 1.Department of Biomedical EngineeringUniversity of North TexasDentonUSA
  2. 2.Department of Materials Science and EngineeringPeking UniversityBeijingChina
  3. 3.Department of Biomedical EngineeringStony Brook UniversityStony BrookUSA

Personalised recommendations