Biofabrication in Tissue Engineering

  • Guangyu BaoEmail author


Biofabrication has been extensively explored in tissue engineering over the past two decades. It uses bioactive materials and live cells as the building blocks to create spatially defined geometries. The goal of biofabrication is to create engineered tissue constructs to replace damaged or diseased human tissues with full functionality. The advantage is that it can rapidly fabricate tissue constructs to meet customized needs. The biomaterials used for biofabrication are called bioinks and usually comprise hydrogel precursor solutions or biocompatible thermal plastics. In this review, we review the commonly used biofabrication methods and critical aspects for creating scaffolds for tissue regeneration. We discuss the criteria for developing and selecting suitable biomaterials as the bioinks. Commonly used biomaterials and their applications are summarized to present the versatility of biofabrication. We also aim to highlight the challenges of this technology and initiate new ideas and opportunities in the future developments in the bioprinting approach and bioinks. The refinement in fabrication techniques, exploration in biology, and development in new bioinks are essential elements toward the advancement of biofabrication.


Biofabrication 3D printing Extrusion bioprinting Tissue engineering Bone engineering Bioinks Printability Vascularization Natural polymers Synthetic polymers Tunable mechanical properties 



I would like to thank Dr. Luc Mongeau and Dr. Jianyu Li (Department of Mechanical Engineering, McGill University) for inspiring my research on biofabrication for tissue engineering.


  1. 1.
    Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Subia B, Kundu J, Kundu SC (2010) Biomaterial scaffold fabrication techniques for potential tissue engineering applications. Tissue Eng 3:141–159Google Scholar
  3. 3.
    Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S (2016) 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol 40:103–112CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Truby RL, Lewis JA (2016) Printing soft matter in three dimensions. Nature 540(7633):371–378CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Malda J et al (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cui H, Nowicki M, Fisher JP, Zhang LG (2017) 3D bioprinting for organ regeneration. Adv Healthc Mater 6(1)Google Scholar
  8. 8.
    Liu X et al (2018) 3D printing of living responsive materials and devices. Adv Mater 30(4)Google Scholar
  9. 9.
    Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73:254–271CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jiang T, Munguia-lopez JG, Flores-torres S, Grant J, De Leon-rodriguez A, Kinsella JM (2017) Directing the self-assembly of tumour spheroids by bioprinting cellular heterogeneous models within alginate / gelatin hydrogels. Sci Rep 7(1):4575CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Pedde RD et al (2017) Emerging biofabrication strategies for engineering complex tissue constructs. Adv Mater 29(19):1–27CrossRefGoogle Scholar
  12. 12.
    Kang H, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A (2013) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34:130–139CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Koch L, Gruene M, Unger C, Chichkov B (2013) Laser assisted cell printing. Curr Pharm Biotechnol 14:91–97PubMedPubMedCentralGoogle Scholar
  15. 15.
    Visser J et al (2013) Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 5(3):035007CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    de Ruijter M et al Out-of-plane 3D-printed microfibers improve the shear properties of hydrogel composites. Small 1702773:2017Google Scholar
  17. 17.
    O’Bryan CS et al (2017) Self-assembled micro-organogels for 3D printing silicone structures. Sci Adv 5:3Google Scholar
  18. 18.
    Guillotin B et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31(28):7250–7256CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Xu T et al (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(18):3580–3588PubMedPubMedCentralGoogle Scholar
  20. 20.
    Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos AG, Fisher JP (2017) 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater 56:3–13CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kim JD, Choi JS, Kim BS, Choi YC, Cho YW (2010) Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates. Polymer 51(10):2147–2154CrossRefGoogle Scholar
  22. 22.
    Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29(4):183–190CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Abbadessa A et al (2016) A synthetic thermosensitive hydrogel for cartilage bioprinting and its biofunctionalization with polysaccharides. Biomacromolecules 17:2137–2147CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rutz AL, Hyland KE, Jakus AE, Burghardt WR, Shah RN (2015) A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv Mater 27(9):1607–1614CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Klotz BJ, Gawlitta D, Rosenberg AJWP, Malda J, Melchels FPW (2016) Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair. Trends Biotechnol 34(5):394–407CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hornick J (2017) 3D printing in healthcare. J 3D Print Med 1(1):13–17CrossRefGoogle Scholar
  27. 27.
    Hinton TJ et al (2015) Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv 1(9):e1500758CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ouyang L, Highley CB, Sun W, Burdick JA (2017) A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Adv Mater 29(8)Google Scholar
  29. 29.
    Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504CrossRefGoogle Scholar
  30. 30.
    Mouser VHM, Melchels FPW, Visser J, Dhert WJA, Gawlitta D, Malda J (2016) Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication 8(3):035003CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Colosi C et al (2016) Microfluidic bioprinting of heterogeneous 3d tissue constructs using low-viscosity bioink. Adv Mater 28:677–684CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Liu W et al (2017) Rapid continuous multimaterial extrusion bioprinting. Adv Mater 29(3)Google Scholar
  33. 33.
    Ribeiro A et al (2018) Assessing bioink shape fidelity to aid material development in 3D bioprinting. Biofabrication 10(1):014102CrossRefGoogle Scholar
  34. 34.
    Blaeser A, Duarte Campos DF, Puster U, Richtering W, Stevens MM, Fischer H (2016) Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity. Adv Healthc Mater 5(3):326–333CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Suntornnond R, Tan EYS, An J, Chua CK (2016) A mathematical model on the resolution of extrusion bioprinting for the development of new bioinks. Materials 9(9)Google Scholar
  36. 36.
    Jin Y, Chai W, Huang Y (2017) Printability study of hydrogel solution extrusion in nanoclay yield-stress bath during printing-then-gelation biofabrication. Mater Sci Eng C 80:313–325CrossRefGoogle Scholar
  37. 37.
    Yuk H, Zhao X (2018) A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks. Adv Mater 30(6)Google Scholar
  38. 38.
    Huang Z, Zhang Y, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRefGoogle Scholar
  39. 39.
    Liu S, Reneker DH (2019) Droplet-jet shape parameters predict electrospun polymer nanofiber diameter. Polymer 168:155–158CrossRefGoogle Scholar
  40. 40.
    Visser J et al (2015) Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun 6:1–10CrossRefGoogle Scholar
  41. 41.
    Jiang T, Munguia-lopez JG, Flores-torres S, Kort-mascort J, Kinsella JM Extrusion bioprinting of soft materials: an emerging technique for biological model fabrication. Appl Phys Rev 6(1):011310, 2019Google Scholar
  42. 42.
    Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hubbell JA, West JL (1999) Polymeric biomaterials with degradation sites for proteases involved in cell migration. Macromolecules 32(1):241–244CrossRefGoogle Scholar
  44. 44.
    Caliari SR, Burdick JA (2016) A practical guide to hydrogels for cell culture. Nat Methods 13(5):405–414CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Monette A, Ceccaldi C, Assaad E, Lerouge S, Lapointe R (2016) Chitosan thermogels for local expansion and delivery of tumor-specific T lymphocytes towards enhanced cancer immunotherapies. Biomaterials 75:237–249CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT (2017) The bioink: a comprehensive review on bioprintable materials. Biotechnol Adv 35:217–239CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Burdick JA, Murphy WL (2012) Moving from static to dynamic complexity in hydrogel design. Nat Commun 3:1–8CrossRefGoogle Scholar
  49. 49.
    Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57:19–34CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wang J, Lin L, Cheng Q, Jiang L (2012) A strong bio-inspired layered PNIPAM-clay nanocomposite hydrogel. Angew Chem Int Ed 51(19):4676–4680CrossRefGoogle Scholar
  52. 52.
    Jin R et al (2010) Synthesis and characterization of hyaluronic acid–poly(ethylene glycol) hydrogels via Michael addition: an injectable biomaterial for cartilage repair. Acta Biomater 6(6):1968–1977CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Chen D, et al. Drilling by light: ice-templated photo-patterning enabled by a dynamically crosslinked hydrogel. Materials Horizons; 2019.Google Scholar
  54. 54.
    Hou J, Li C, Guan Y, Zhang Y, Zhu XX (2015) Enzymatically crosslinked alginate hydrogels with improved adhesion properties. Polym Chem 6(12):2204–2213CrossRefGoogle Scholar
  55. 55.
    Kular JK, Basu S, Sharma RI (2014) The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng 5:1–17CrossRefGoogle Scholar
  56. 56.
    Wen JH et al (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13(10):979–987CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Khetan S, Burdick JA (2010) Biomaterials patterning network structure to spatially control cellular remodeling and stem cell fate within 3-dimensional hydrogels. Biomaterials 31(32):8228–8234CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Chaudhuri O et al (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15(3):326–334CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhao X, Huebsch N, Mooney DJ, Suo Z (2010) Stress-relaxation behavior in gels with ionic and covalent crosslinks. J Appl Phys 107(6)Google Scholar
  60. 60.
    Lou J, Stowers R, Nam S, Xia Y, Chaudhuri O (2018) Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154:213–222CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Chiu YC et al (2011) The role of pore size on vascularization and tissue remodeling in PEG hydrogels. Biomaterials 32(26):6045–6051CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Oh SH, Park IK, Kim JM, Lee JH (2007) In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Biomaterials 28(9):1664–1671CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci 86(3):933–937CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ying G-L et al (2018) Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels. Adv Mater 30(50):e1805460CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1(12):16071CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Deshayes S, Kasko AM (2013) Polymeric biomaterials with engineered degradation. J Polym Sci Pt A Polym Chem 51(17):3531–3566CrossRefGoogle Scholar
  67. 67.
    Vold IMN, Christensen BE (2005) Periodate oxidation of chitosans with different chemical compositions. Carbohydr Res 340(4):679–684CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Boontheekul T, Kong HJ, Mooney DJ (2005) Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26(15):2455–2465CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Göpferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17(2):103–114CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Kost J, Leong K, Langer R (1989) Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc Natl Acad Sci 86:7663–7666CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    O’Bryan CS et al (2017) Three-dimensional printing with sacrificial materials for soft matter manufacturing. MRS Bull 42(8):571–577CrossRefGoogle Scholar
  72. 72.
    Hinton TJ, Hudson A, Pusch K, Lee A, Feinberg AW (2016) 3D printing PDMS elastomer in a hydrophilic support bath via freeform reversible embedding. ACS Biomater Sci Eng 2(10):1781–1786CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Grosskopf AK, Truby RL, Kim H, Perazzo A, Lewis JA, Stone HA (2018) Viscoplastic matrix materials for embedded 3D printing. ACS Appl Mater Interfaces 10(27):23353–23361CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Hoesli CA et al (2012) Reversal of diabetes by βtC3 cells encapsulated in alginate beads generated by emulsion and internal gelation. J Biomed Mater Res - Part B Appl Biomater 100 B(4):1017–1028CrossRefGoogle Scholar
  75. 75.
    Jia J et al (2014) Engineering alginate as bioink for bioprinting. Acta Biomater 10(10):4323–4331CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Beyer ST, Bsoul A, Ahmadi A, Walus K (2013) 3D alginate constructs for tissue engineering printed using a coaxial flow focusing microfluidic device. In: 2013 transducers eurosensors XXVII 17th Int. Conf. solid-state sensors, actuators microsystems, pp 1206–1209CrossRefGoogle Scholar
  77. 77.
    Wüst S, Godla ME, Müller R, Hofmann S (2014) Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 10(2)Google Scholar
  78. 78.
    Jeon O, Alt DS, Ahmed SM, Alsberg E (2012) The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels. Biomaterials 33(13):3503–3514CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Das S et al (2015) Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Ng WL, Yeong WY, Naing MW (2016) Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering. Int J Bioprinting 2(1):53–62Google Scholar
  81. 81.
    Lim KS et al (2016) New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks. ACS Biomater Sci Eng 2(10):1752–1762CrossRefGoogle Scholar
  82. 82.
    Kolesky DB, Homan KA, Skylar-scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. PNAS 113(12):3179–3184CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Park JY et al (2014) A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting. Biofabrication 6(3)Google Scholar
  84. 84.
    Yuan Y, Chesnutt BM, Haggard WO, Bumgardner JD (2011) Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 4(8):1399–1416CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Assaad E, Maire M, Lerouge S (2015) Injectable thermosensitive chitosan hydrogels with controlled gelation kinetics and enhanced mechanical resistance. Carbohydr Polym 130:87–96CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Chenite A et al (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Li B et al (2015) Hydrosoluble, UV-crosslinkable and injectable chitosan for patterned cell-laden microgel and rapid transdermal curing hydrogel in vivo. Acta Biomater 22:59–69CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Yang J, Bai R, Suo Z (2018) Topological adhesion of wet materials. Adv Mater 1800671:1–7Google Scholar
  89. 89.
    Li J et al (2017) Tough adhesives for diverse wet surfaces. Science 357(6349):378–381CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Murphy SV, Skardal A, Atala A (2013) Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res Pt A 101A(1):272–284CrossRefGoogle Scholar
  91. 91.
    Gasperini L, Mano JF, Reis RL (2014) Natural polymers for the microencapsulation of cells. J R Soc Interface 11(100):20140817CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Skardal A et al (2015) A hydrogel bioink toolkit for mimicking native tissue biochemical and mechanical properties in bioprinted tissue constructs. Acta Biomater 25:24–34CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Lee Y-B et al (2010) Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol 223(2):645–652CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Snyder JE et al (2011) Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication 3(3):034112CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Pati F et al (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K (2015) A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7(4):045009CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Bertassoni LE et al (2014) Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    F. Y. Hsieh, H. H. Lin, and S. H. Hsu, “3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair,” Biomaterials, vol. 71:48–57, 2015.Google Scholar
  99. 99.
    Levato R, Visser J, Planell JA, Engel E, Malda J, Mateos-Timoneda MA (2014) Biofabrication of tissue constructs by 3D bioprinting of cell-laden microcarriers. Biofabrication 6:035020CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Jung JW, Lee JS, Cho DW (2016) Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs. Sci Rep 6(February):1–9Google Scholar
  101. 101.
    Righetti PG, Brost BCW, Snyder RS (1981) On the limiting pore size of hydrophilic gels for electrophoresis and isoelectric focussing. J Biochem Biophys Methods 4:347–363CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Buckley CT, Thorpe SD, O’Brien FJ, Robinson AJ, Kelly DJ (2009) The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels. J Mech Behav Biomed Mater 2(5):512–521CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Duarte Campos DF et al (2015) The stiffness and structure of three-dimensional printed hydrogels direct the differentiation of mesenchymal stromal cells toward adipogenic and osteogenic lineages. Tissue Eng Pt A 21(3–4):740–756CrossRefGoogle Scholar
  104. 104.
    Armstrong JPK, Burke M, Carter BM, Davis SA, Perriman AW (2016) 3D bioprinting using a templated porous bioink. Adv Healthc Mater 5(14):1724–1730CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Gao Q, He Y, Fu JZ, Liu A, Ma L (2015) Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61:203–215CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Bencherif SA et al (2012) Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci 109(48):19590–19595CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Wang L et al (2017) UV-crosslinkable and thermo-responsive chitosan hybrid hydrogel for NIR-triggered localized on-demand drug delivery. Carbohydr Polym 174(July):904–914CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Wu Q, Therriault D, Heuzey MC (2018) Processing and properties of chitosan inks for 3D printing of hydrogel microstructures. ACS Biomater Sci Eng 4(7):2643–2652CrossRefGoogle Scholar
  109. 109.
    Duan B, Kapetanovic E, Hockaday LA, Butcher JT (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10(5):1836–1846CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3(2):232–238CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Jang J, Kim TG, Kim BS, Kim SW, Kwon SM, Cho DW (2016) Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater 33:88–95CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S (2016) Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci Rep 6:24474CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Zhao Y, Li Y, Mao S, Sun W, Yao R (2015) The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication 7(4):045002CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Müller M, Becher J, Schnabelrauch M, Zenobi-Wong M (2015) Nanostructured pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication 7(3):035006CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Highley CB, Song KH, Daly AC, Burdick JA (2019) Jammed microgel inks for 3D printing applications. Adv Sci 6(1):1801076CrossRefGoogle Scholar
  116. 116.
    Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW (2014) 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6(2):024103CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Kundu J, Shim JH, Jang J, Kim SW, Cho DW (2015) An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 9(11):1286–1297CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Zheng Z et al (2018) 3D bioprinting of self-standing silk-based bioink. Adv Healthc Mater 7(6):1–12CrossRefGoogle Scholar
  119. 119.
    Wu D et al (2018) 3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity. Mater Des 160:486–495CrossRefGoogle Scholar
  120. 120.
    Almeida CR, Serra T, Oliveira MI, Planell JA, Barbosa MA, Navarro M (2014) Acta Biomaterialia Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte / macrophage responses : Unraveling the effect of 3-D structures on inflammation. Acta Biomater 10(2):613–622CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Xiaohua L, Peter M (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486CrossRefGoogle Scholar
  122. 122.
    Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Homan KA et al (2016) Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep 6:1–13CrossRefGoogle Scholar
  124. 124.
    Sell SA, McClure MJ, Garg K, Wolfe PS, Bowlin GL (2009) Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev 61(12):1007–1019CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Zhang H, Liu X, Yang M, Zhu L (2015) Silk fibroin/sodium alginate composite nano-fibrous scaffold prepared through thermally induced phase-separation (TIPS) method for biomedical applications. Mater Sci Eng C 55:8–13CrossRefGoogle Scholar
  126. 126.
    Rodriguez MJ, Brown J, Giordano J, Lin SJ, Omenetto FG, Kaplan DL (2017) Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments. Biomaterials 117:105–115CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Shanjani Y, Pan CC, Elomaa L, Yang Y (2015) A novel bioprinting method and system for forming hybrid tissue engineering constructs A novel bioprinting method and system for forming hybrid tissue engineering constructs. Biofabrication 7(4):045008CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Ouyang L, Highley CB, Rodell CB, Sun W, Burdick JA (2016) 3D printing of shear-thinning hyaluronic acid hydrogels with secondary cross-linking. ACS Biomater Sci Eng 2(10):1752–1762CrossRefGoogle Scholar
  129. 129.
    Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res Pt A 101A(5):1255–1264CrossRefGoogle Scholar
  130. 130.
    Rhee S, Puetzer JL, Mason BN, Reinhart-King CA, Bonassar LJ (2016) 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering. ACS Biomater Sci Eng 2(10):1800–1805CrossRefGoogle Scholar
  131. 131.
    Lee V et al (2014) Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 20(6):473–484CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Ng WL, Yeong WY, Naing MW (2016) Development of polyelectrolyte chitosan-gelatin hydrogels for skin bioprinting. Proc CIRP 49:105–112CrossRefGoogle Scholar
  133. 133.
    Martínez Ávila H, Schwarz S, Rotter N, Gatenholm P (2016) 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprinting:1, 22–2, 35Google Scholar
  134. 134.
    Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR (2009) Biomaterials organ printing : Tissue spheroids as building blocks. Biomaterials 30(12):2164–2174CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Lee VK et al (2014) Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials 35(28):8092–8102CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Wüst S, Müller R, Hofmann S (2015) 3D Bioprinting of complex channels—effects of material, orientation, geometry, and cell embedding. J Biomed Mater Res Pt A 103(8):2558–2570CrossRefGoogle Scholar
  137. 137.
    Ozbolat IT (2015) Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol 33(7):395–400CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Veiseh O et al (2015) Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater 14(6):643–651CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Ratner BD et al (2010) Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc Natl Acad Sci 107(34):15211–15216CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Kim YK, Que R, Wang S-W, Liu WF (2014) Modification of biomaterials with a self-protein inhibits the macrophage response. Adv Healthc Mater 3(7):989–994CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Tsai RK, Rodriguez PL, Discher DE, Pantano DA, Harada T, Christian DA (2013) Minimal ‘self’ peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339(6122):971–975CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Becker ST et al (2012) Endocultivation: the influence of delayed vs. simultaneous application of BMP-2 onto individually formed hydroxyapatite matrices for heterotopic bone induction. Int J Oral Maxillofac Surg 41(9):1153–1160CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Lake GJ, Thomas AG (1967) The Strength of Highly Elastic Materials. Proc R Soc A Math Phys Eng Sci 300(1460):108–119Google Scholar
  144. 144.
    Zhao X (2014) Multi-scale multi-mechanism design of tough hydrogels: Building dissipation into stretchy networks. Soft Matter 10(5):672–687CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double-network hydrogels with extremely high mechanical strength. Adv Mater 15(14):1155–1158CrossRefGoogle Scholar
  146. 146.
    Sun J et al (2012) Highly stretchable and tough hydrogels. Nature 489(7414):133–136CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Yang Y, Wang X, Yang F, Shen H, Wu D (2016) A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels. Adv Mater:7178–7184Google Scholar
  148. 148.
    Bai R, Yang J, Suo Z (2019) Fatigue of hydrogels. Eur J Mech A/Solids 74(2018):337–370CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringMacdonald Engineering Building Room 270MontrealCanada

Personalised recommendations