Minimally Invasive Technologies for Biosensing

  • Shiming Zhang
  • KangJu Lee
  • Marcus Goudie
  • Han-Jun Kim
  • Wujin Sun
  • Junmin Lee
  • Yihang Chen
  • Haonan Ling
  • Zhikang Li
  • Cole Benyshek
  • Martin C. Hartel
  • Mehmet R. Dokmeci
  • Ali KhademhosseiniEmail author


Minimally invasive biosensors are emerging as powerful tools to enable personalized healthcare and precision medicine. Recent advances in biotechnology, wireless communication, and flexible electronics have offered unprecedented opportunity to develop minimally invasive biosensors for commercial applications. In this chapter, we discuss emerging technologies of minimally invasive biosensing and their working principle, applications, and challenges. We also present areas where further endeavors are needed and future directions in this field.


Biosensing Minimally invasive Wearable Edible Microneedle Smart bandages 



K. L, M. G, and H. K contributed equally to this work. The authors declare no conflict of interests in this work. This work has been supported by National Institutes of Health (1R01HL140951-01A1, 1R01GM126571-01, 1R01GM126831-01, 1R01EB023052-01A1).


  1. 1.
    Ashammakhi, N., Ahadian, S., Darabi, M. A., El Tahchi, M., Lee, J., Suthiwanich, K., Sheikhi, A., Dokmeci, M. R., Oklu, R., & Khademhosseini, A. (2019). Minimally invasive and regenerative therapeutics. Advanced Materials, 31(1), 1804041.CrossRefGoogle Scholar
  2. 2.
    Daddona, P. E., Fieldson, G. T., Nat, A. S., & Lin, W.-Q. (2000). Minimally invasive detecting device. Google Patents.Google Scholar
  3. 3.
    Bandodkar, A. J., & Wang, J. (2014). Non-invasive wearable electrochemical sensors: a review. Trends in Biotechnology, 32(7), 363–371.CrossRefGoogle Scholar
  4. 4.
    Wang, J. (2006). Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosensors and Bioelectronics, 21(10), 1887–1892.CrossRefGoogle Scholar
  5. 5.
    Corstjens, A. M., Ligtenberg, J. J., van der Horst, I. C., Spanjersberg, R., Lind, J. S., Tulleken, J. E., Meertens, J. H., & Zijlstra, J. G. (2006). Accuracy and feasibility of point-of-care and continuous blood glucose analysis in critically ill ICU patients. Critical Care, 10(5), R135.CrossRefGoogle Scholar
  6. 6.
    Yetisen, A. K., Akram, M. S., & Lowe, C. R. (2013). Paper-based microfluidic point-of-care diagnostic devices. Lab on a Chip, 13(12), 2210–2251.CrossRefGoogle Scholar
  7. 7.
    Teerinen, T., Lappalainen, T., & Erho, T. (2014). A paper-based lateral flow assay for morphine. Analytical and Bioanalytical Chemistry, 406(24), 5955–5965.CrossRefGoogle Scholar
  8. 8.
    Vashist, S. K., Luppa, P. B., Yeo, L. Y., Ozcan, A., & Luong, J. H. T. (2015). Emerging technologies for next-generation point-of-care testing. Trends in Biotechnology, 33(11), 692–705.CrossRefGoogle Scholar
  9. 9.
    Chin, C. D., Linder, V., & Sia, S. K. (2012). Commercialization of microfluidic point-of-care diagnostic devices. Lab on a Chip, 12(12), 2118–2134.CrossRefGoogle Scholar
  10. 10.
    Yang, Y., & Gao, W. (2019). Wearable and flexible electronics for continuous molecular monitoring. Chemical Society Reviews, 48(6), 1465–1491.Google Scholar
  11. 11.
    Yetisen, A. K., Jiang, N., Tamayol, A., Ruiz-Esparza, G. U., Zhang, Y. S., Medina-Pando, S., Gupta, A., Wolffsohn, J. S., Butt, H., Khademhosseini, A., & Yun, S.-H. (2017). Paper-based microfluidic system for tear electrolyte analysis. Lab on a Chip, 17(6), 1137–1148.CrossRefGoogle Scholar
  12. 12.
    Bihar, E., Deng, Y., Miyake, T., Saadaoui, M., Malliaras, G. G., & Rolandi, M. (2016). A Disposable paper breathalyzer with an alcohol sensing organic electrochemical transistor. Scientific Reports, 6, 27582.CrossRefGoogle Scholar
  13. 13.
    Sun, W., Lee, J., Zhang, S., Benyshek, C., Dokmeci, M. R., & Khademhosseini, A. (2018). Engineering precision medicine. Advanced Science, 0(0), 1801039.Google Scholar
  14. 14.
    Gao, W., Emaminejad, S., Nyein, H. Y. Y., Challa, S., Chen, K., Peck, A., Fahad, H. M., Ota, H., Shiraki, H., & Kiriya, D. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529(7587), 509.CrossRefGoogle Scholar
  15. 15.
    Windmiller, J. R., & Wang, J. (2013). Wearable electrochemical sensors and biosensors: a review. Electroanalysis, 25(1), 29–46.CrossRefGoogle Scholar
  16. 16.
    Miyamoto, A., Lee, S., Cooray, N. F., Lee, S., Mori, M., Matsuhisa, N., Jin, H., Yoda, L., Yokota, T., & Itoh, A. (2017). Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nature Nanotechnology, 12(9), 907.CrossRefGoogle Scholar
  17. 17.
    Oh, J. Y., Rondeau-Gagné, S., Chiu, Y.-C., Chortos, A., Lissel, F., Wang, G.-J. N., Schroeder, B. C., Kurosawa, T., Lopez, J., & Katsumata, T. (2016). Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 539(7629), 411.CrossRefGoogle Scholar
  18. 18.
    Sessolo, M., Khodagholy, D., Rivnay, J., Maddalena, F., Gleyzes, M., Steidl, E., Buisson, B., & Malliaras, G. G. (2013). Easy-to-fabricate conducting polymer microelectrode arrays. Advanced Materials, 25(15), 2135–2139.CrossRefGoogle Scholar
  19. 19.
    Park, S., Heo, S. W., Lee, W., Inoue, D., Jiang, Z., Yu, K., Jinno, H., Hashizume, D., Sekino, M., & Yokota, T. (2018). Self-powered ultra-flexible electronics via nano-grating-patterned organic photovoltaics. Nature, 561(7724), 516.CrossRefGoogle Scholar
  20. 20.
    Wang, S., Xu, J., Wang, W., Wang, G.-J. N., Rastak, R., Molina-Lopez, F., Chung, J. W., Niu, S., Feig, V. R., & Lopez, J. (2018). Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 555(7694), 83.CrossRefGoogle Scholar
  21. 21.
    Zhang, S., Hubis, E., Tomasello, G., Soliveri, G., Kumar, P., & Cicoira, F. (2017). Patterning of stretchable organic electrochemical transistors. Chemistry of Materials, 29(7), 3126–3132.CrossRefGoogle Scholar
  22. 22.
    Krishnan, S. R., Ray, T. R., Ayer, A. B., Ma, Y., Gutruf, P., Lee, K., Lee, J. Y., Wei, C., Feng, X., & Ng, B. (2018). Epidermal electronics for noninvasive, wireless, quantitative assessment of ventricular shunt function in patients with hydrocephalus. Science Translational Medicine, 10(465), eaat8437.CrossRefGoogle Scholar
  23. 23.
    Enzo Pasquale, S., Lorussi, F., Mazzoldi, A., & Rossi, D. D. (2003). Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sensors Journal, 3(4), 460–467.CrossRefGoogle Scholar
  24. 24.
    Yang, Y.-L., Chuang, M.-C., Lou, S.-L., & Wang, J. (2010). Thick-film textile-based amperometric sensors and biosensors. Analyst, 135(6), 1230–1234.CrossRefGoogle Scholar
  25. 25.
    Chuang, M.-C., Windmiller, J. R., Santhosh, P., Ramírez, G. V., Galik, M., Chou, T.-Y., & Wang, J. (2010). Textile-based Electrochemical Sensing: Effect of fabric substrate and detection of nitroaromatic explosives. Electroanalysis, 22(21), 2511–2518.CrossRefGoogle Scholar
  26. 26.
    Bandodkar, A. J., Molinnus, D., Mirza, O., Guinovart, T., Windmiller, J. R., Valdés-Ramírez, G., Andrade, F. J., Schöning, M. J., & Wang, J. (2014). Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosensors and Bioelectronics, 54, 603–609.CrossRefGoogle Scholar
  27. 27.
    Yuk, H., Lu, B., & Zhao, X. (2019). Hydrogel bioelectronics. Chemical Society Reviews, 48(6), 1642–1667.Google Scholar
  28. 28.
    Wang, J. (2005). Nanomaterial-based electrochemical biosensors. Analyst, 130(4), 421–426.CrossRefGoogle Scholar
  29. 29.
    Parlak, O., Keene, S. T., Marais, A., Curto, V. F., & Salleo, A. (2018). Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Science Advances, 4(7), eaar2904.CrossRefGoogle Scholar
  30. 30.
    Chen, Y., Lu, S., Zhang, S., Li, Y., Qu, Z., Chen, Y., Lu, B., Wang, X., & Feng, X. (2017). Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Science Advances, 3(12), e1701629.CrossRefGoogle Scholar
  31. 31.
    Koh, A., Kang, D., Xue, Y., Lee, S., Pielak, R. M., Kim, J., Hwang, T., Min, S., Banks, A., Bastien, P., Manco, M. C., Wang, L., Ammann, K. R., Jang, K.-I., Won, P., Han, S., Ghaffari, R., Paik, U., Slepian, M. J., Balooch, G., Huang, Y., & Rogers, J. A. (2016). A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Science Translational Medicine, 8(366).Google Scholar
  32. 32.
    Kim, S.-W., Lee, Y., Park, J., Kim, S., Chae, H., Ko, H., & Kim, J. (2018). A triple-mode flexible e-skin sensor interface for multi-purpose wearable applications. Sensors, 18(1), 78.Google Scholar
  33. 33.
    Miyamoto, A., Lee, S., Cooray, N. F., Lee, S., Mori, M., Matsuhisa, N., Jin, H., Yoda, L., Yokota, T., Itoh, A., Sekino, M., Kawasaki, H., Ebihara, T., Amagai, M., & Someya, T. (2017). Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nature Nanotechnology, 12, 907.CrossRefGoogle Scholar
  34. 34.
    Wang, C., Li, X., Hu, H., Zhang, L., Huang, Z., Lin, M., Zhang, Z., Yin, Z., Huang, B., Gong, H., Bhaskaran, S., Gu, Y., Makihata, M., Guo, Y., Lei, Y., Chen, Y., Wang, C., Li, Y., Zhang, T., Chen, Z., Pisano, A. P., Zhang, L., Zhou, Q., & Xu, S. (2018). Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nature Biomedical Engineering, 2(9), 687–695.CrossRefGoogle Scholar
  35. 35.
    Rose, D. P., Ratterman, M. E., Griffin, D. K., Hou, L., Kelley-Loughnane, N., Naik, R. R., Hagen, J. A., Papautsky, I., & Heikenfeld, J. C. (2015). Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Transactions on Biomedical Engineering, 62(6), 1457–1465.CrossRefGoogle Scholar
  36. 36.
    Bandodkar, A. J., Hung, V. W. S., Jia, W., Valdés-Ramírez, G., Windmiller, J. R., Martinez, A. G., Ramírez, J., Chan, G., Kerman, K., & Wang, J. (2013). Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst, 138(1), 123–128.CrossRefGoogle Scholar
  37. 37.
    Gao, W., Nyein, H. Y. Y., Shahpar, Z., Fahad, H. M., Chen, K., Emaminejad, S., Gao, Y., Tai, L.-C., Ota, H., Wu, E., Bullock, J., Zeng, Y., Lien, D.-H., & Javey, A. (2016). Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sensors, 1(7), 866–874.CrossRefGoogle Scholar
  38. 38.
    Yao, H., Shum, A. J., Cowan, M., Lähdesmäki, I., & Parviz, B. A. (2011). A contact lens with embedded sensor for monitoring tear glucose level. Biosensors and Bioelectronics, 26(7), 3290–3296.CrossRefGoogle Scholar
  39. 39.
    Borini, S., White, R., Wei, D., Astley, M., Haque, S., Spigone, E., Harris, N., Kivioja, J., & Ryhänen, T. (2013). Ultrafast graphene oxide humidity sensors. ACS Nano, 7(12), 11166–11173.CrossRefGoogle Scholar
  40. 40.
    Bandodkar, A. J., Jia, W., Yardımcı, C., Wang, X., Ramirez, J., & Wang, J. (2015). Tattoo-based noninvasive glucose monitoring: A proof-of-concept study. Analytical Chemistry, 87(1), 394–398.CrossRefGoogle Scholar
  41. 41.
    Tehrani, Z., Korochkina, T., Govindarajan, S., Thomas, D. J., O’Mahony, J., Kettle, J., Claypole, T. C., & Gethin, D. T. (2015). Ultra-thin flexible screen printed rechargeable polymer battery for wearable electronic applications. Organic Electronics, 26, 386–394.CrossRefGoogle Scholar
  42. 42.
    Sonner, Z., Wilder, E., Heikenfeld, J., Kasting, G., Beyette, F., Swaile, D., Sherman, F., Joyce, J., Hagen, J., Kelley-Loughnane, N., & Naik, R. (2015). The microfluidics of the eccrine sweat gland, including biomarker partitioning, transport, and biosensing implications. Biomicrofluidics, 9(3), 031301.CrossRefGoogle Scholar
  43. 43.
    Sato, K. (1977). The physiology, pharmacology, and biochemistry of the eccrine sweat gland. In R. H. Adrian, E. Helmreich, H. Holzer, R. Jung, K. Kramer, O. Krayer, R. J. Linden, F. Lynen, P. A. Miescher, J. Piiper, H. Rasmussen, A. E. Renold, U. Trendelenburg, K. Ullrich, W. Vogt, & A. Weber (Eds.), Reviews of physiology, biochemistry and pharmacology (Vol. 79, pp. 51–131). Berlin, Heidelberg: Springer Berlin Heidelberg.Google Scholar
  44. 44.
    Al-Tamer, Y. Y., Hadi, E. A., & Al-Badrani, I. e. I. (1997). Sweat urea, uric acid and creatinine concentrations in uraemic patients. Urological Research, 25(5), 337–340.CrossRefGoogle Scholar
  45. 45.
    Varghese, S. A., Powell, T. B., Budisavljevic, M. N., Oates, J. C., Raymond, J. R., Almeida, J. S., & Arthur, J. M. (2007). Urine biomarkers predict the cause of glomerular disease. Journal of the American Society of Nephrology, 18(3), 913.CrossRefGoogle Scholar
  46. 46.
    Tesch, G. H. (2010). Serum and urine biomarkers of kidney disease: A pathophysiological perspective. Nephrology, 15(6), 609–616.CrossRefGoogle Scholar
  47. 47.
    Holly, F. J., & Lemp, M. A. (1977). Tear physiology and dry eyes. Survey of Ophthalmology, 22(2), 69–87.CrossRefGoogle Scholar
  48. 48.
    von Thun und Hohenstein-Blaul, N., Funke, S., & Grus, F. H. (2013). Tears as a source of biomarkers for ocular and systemic diseases. Experimental Eye Research, 117, 126–137.CrossRefGoogle Scholar
  49. 49.
    Garg, S. K., Schwartz, S., & Edelman, S. V. (2004). Improved glucose excursions using an implantable real-time continuous glucose sensor in adults with type 1 diabetes. Diabetes Care, 27(3), 734–738.CrossRefGoogle Scholar
  50. 50.
    Degim, I. T., Ilbasmis, S., Dundaroz, R., & Oguz, Y. (2003). Reverse iontophoresis: a non-invasive technique for measuring blood urea level. Pediatric Nephrology, 18(10), 1032–1037.CrossRefGoogle Scholar
  51. 51.
    Risby, T. H., & Solga, S. F. (2006). Current status of clinical breath analysis. Applied Physics B, 85(2), 421–426.CrossRefGoogle Scholar
  52. 52.
    Rogers, J. A. (2017). Nanomesh on-skin electronics. Nature Nanotechnology, 12, 839.CrossRefGoogle Scholar
  53. 53.
    Zhang, S., & Cicoira, F. (2018). Flexible self-powered biosensors. Nature, 561(7724), 466.CrossRefGoogle Scholar
  54. 54.
    Jeong, J.-W., Kim, M. K., Cheng, H., Yeo, W.-H., Huang, X., Liu, Y., Zhang, Y., Huang, Y., & Rogers, J. A. (2014). Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Advanced Healthcare Materials, 3(5), 642–648.CrossRefGoogle Scholar
  55. 55.
    Koo, J. H., Jeong, S., Shim, H. J., Son, D., Kim, J., Kim, D. C., Choi, S., Hong, J.-I., & Kim, D.-H. (2017). Wearable electrocardiogram monitor using carbon nanotube electronics and color-tunable organic light-emitting diodes. ACS Nano, 11(10), 10032–10041.CrossRefGoogle Scholar
  56. 56.
    Kalantar-Zadeh, K., Berean, K. J., Ha, N., Chrimes, A. F., Xu, K., Grando, D., Ou, J. Z., Pillai, N., Campbell, J. L., Brkljača, R., Taylor, K. M., Burgell, R. E., Yao, C. K., Ward, S. A., McSweeney, C. S., Muir, J. G., & Gibson, P. R. (2018). A human pilot trial of ingestible electronic capsules capable of sensing different gases in the gut. Nature Electronics, 1(1), 79–87.CrossRefGoogle Scholar
  57. 57.
    Kim, Y. J., Chun, S.-E., Whitacre, J., & Bettinger, C. J. (2013). Self-deployable current sources fabricated from edible materials. Journal of Materials Chemistry B, 1(31), 3781–3788.CrossRefGoogle Scholar
  58. 58.
    Bettinger, C. J. (2015). Materials advances for next-generation ingestible electronic medical devices. Trends in Biotechnology, 33(10), 575–585.CrossRefGoogle Scholar
  59. 59.
    Chai, P. R., Carreiro, S., Innes, B. J., Chapman, B., Schreiber, K. L., Edwards, R. R., Carrico, A. W., & Boyer, E. W. (2017). Oxycodone ingestion patterns in acute fracture pain with digital pills. Anesthesia & Analgesia, 125(6), 2105–2112.CrossRefGoogle Scholar
  60. 60.
    Kaushik, S., Hord, A. H., Denson, D. D., McAllister, D. V., Smitra, S., Allen, M. G., & Prausnitz, M. R. (2001). Lack of pain associated with microfabricated microneedles. Anesthesia and Analgesia, 92(2), 502–504.CrossRefGoogle Scholar
  61. 61.
    Gupta, J., Gill, H. S., Andrews, S. N., & Prausnitz, M. R. (2011). Kinetics of skin resealing after insertion of microneedles in human subjects. Journal of Controlled Release, 154(2), 148–155.CrossRefGoogle Scholar
  62. 62.
    Esfandyarpour, R., Esfandyarpour, H., Javanmard, M., Harris, J. S., & Davis, R. W. (2013). Microneedle biosensor: A method for direct label-free real time protein detection. Sensors and Actuators B-Chemical, 177, 848–855.Google Scholar
  63. 63.
    Mohan, A. M. V., Windmiller, J. R., Mishra, R. K., & Wang, J. (2017). Continuous minimally-invasive alcohol monitoring using microneedle sensor arrays. Biosensors & Bioelectronics, 91, 574–579.CrossRefGoogle Scholar
  64. 64.
    Vazquez, P., Herzog, G., O’Mahony, C., O’Brien, J., Scully, J., Blake, A., O’Mathuna, C., & Galvin, P. (2014). Microscopic gel-liquid interfaces supported by hollow microneedle array for voltammetric drug detection. Sensors and Actuators B-Chemical, 201, 572–578.CrossRefGoogle Scholar
  65. 65.
    Miller, P. R., Narayan, R. J., & Polsky, R. (2016). Microneedle-based sensors for medical diagnosis. Journal of Materials Chemistry B, 4(8), 1379–1383.CrossRefGoogle Scholar
  66. 66.
    Foghandersen, N., Altura, B. M., Altura, B. T., & Siggaardandersen, O. (1995). Composition of interstitial fluid. Clinical Chemistry, 41(10), 1522–1525.CrossRefGoogle Scholar
  67. 67.
    Keum, D. H., Jung, H. S., Wang, T., Shin, M. H., Kim, Y. E., Kim, K. H., Ahn, G. O., & Hahn, S. K. (2015). Microneedle biosensor for real-time electrical detection of nitric oxide for in situ cancer diagnosis during endomicroscopy. Advanced Healthcare Materials, 4(8), 1153–1158.CrossRefGoogle Scholar
  68. 68.
    Bollella, P., Sharma, S., Cass, A. E. G., & Antiochia, R. (2019). Microneedle-based biosensor for minimally-invasive lactate detection. Biosensors & Bioelectronics, 123, 152–159.CrossRefGoogle Scholar
  69. 69.
    Kim, L. W., KB, Cho, C. H., Park, D. S., Cho, S. J., & Shim, Y. B. (2019). Continuous glucose monitoring using a microneedle array sensor coupled with a wireless signal transmitter. Sensors and Actuators B: Chemical, 281(15), 14–21.CrossRefGoogle Scholar
  70. 70.
    Chang, H., Zheng, M. J., Yu, X. J., Than, A., Seeni, R. Z., Kang, R. J., Tian, J. Q., Khanh, D. P., Liu, L. B., Chen, P., & Xu, C. J. (2017). A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Advanced Materials, 29(37), 1702243.Google Scholar
  71. 71.
    Mishra, R. K., Mohan, A. M. V., Soto, F., Chrostowski, R., & Wang, J. (2017). A microneedle biosensor for minimally-invasive transdermal detection of nerve agents. Analyst, 142(6), 918–924.CrossRefGoogle Scholar
  72. 72.
    Samant, P. P., & Prausnitz, M. R. (2018). Mechanisms of sampling interstitial fluid from skin using a microneedle patch. Proceedings of the National Academy of Sciences of the United States of America, 115(18), 4583–4588.CrossRefGoogle Scholar
  73. 73.
    Jina, M. J. T. A., Tamada, J. A., McGill, S., Desai, S., Chua, B., Chang, A., & Christiansen, M. (2014). Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. Journal of Diabetes Science and Technology, 8, 483–487.CrossRefGoogle Scholar
  74. 74.
    Naixin Song, P. X., Shen, W., Javanmard, M., Allen, M. G. (2018). Microwell-array on a flexible needle: A transcutaneous insertable impedance sensor for label-free cytokine detection. In 2018 IEEE Micro Electro Mechanical Systems (MEMS) (pp. 392–395). IEEE.Google Scholar
  75. 75.
    Zhou, J. X., Ding, F., Tang, L. N., Li, T., Li, Y. H., Zhang, Y. J., Gong, H. Y., Li, Y. T., & Zhang, G. J. (2018). Monitoring of pH changes in a live rat brain with MoS2/PAN functionalized microneedles. Analyst, 143(18), 4469–4475.CrossRefGoogle Scholar
  76. 76.
    Mirza, K. B., Zuliani, C., Hou, B., Ng, F. S., Peters, N. S., & Toumazou, C. (2017). Injection moulded microneedle sensor for real-time wireless pH monitoring. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 189–192). IEEE.Google Scholar
  77. 77.
    Vazquez, P., O’Mahony, C., O’Brien, J., Scully, J., Blake, A., O’Mathuna, C., Galvin, P., Herzog, G. (2014). Microneedle sensor for voltammetric drug detection in physiological fluids. In SENSORS, 2014 IEEE (pp. 1768–1771). IEEE.Google Scholar
  78. 78.
    O’Connor, J. (2012). Higher wound care costs are driving treatment research. McKnight’s.Google Scholar
  79. 79.
    Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings–a review. Biomedicine, 5(4), 22.Google Scholar
  80. 80.
    Lochno, P., Kraus-Pfeiffer, G., & Jacobs, P. (2013). Review and basics of frequently used wound dressings. MMW Fortschritte der Medizin, 155(10), 59.CrossRefGoogle Scholar
  81. 81.
    Sarabahi, S. (2012). Recent advances in topical wound care. Indian Journal of Plastic Surgery: Official Publication of the Association of Plastic Surgeons of India, 45(2), 379.CrossRefGoogle Scholar
  82. 82.
    Frykberg, R. G., & Banks, J. (2015). Challenges in the treatment of chronic wounds. Advances in Wound Care, 4(9), 560–582.CrossRefGoogle Scholar
  83. 83.
    Derakhshandeh, H., Kashaf, S. S., Aghabaglou, F., Ghanavati, I. O., & Tamayol, A. (2018). Smart bandages: The future of wound care. Trends in Biotechnology, 36(12), 1259–1274.Google Scholar
  84. 84.
    Gianino, E., Miller, C., & Gilmore, J. (2018). Smart wound dressings for diabetic chronic wounds. Bioengineering, 5(3), 51.CrossRefGoogle Scholar
  85. 85.
    Andreu, V., Mendoza, G., Arruebo, M., & Irusta, S. (2015). Smart dressings based on nanostructured fibers containing natural origin antimicrobial, anti-inflammatory, and regenerative compounds. Materials, 8(8), 5154–5193.CrossRefGoogle Scholar
  86. 86.
    Boateng, J. S., Matthews, K. H., Stevens, H. N., & Eccleston, G. M. (2008). Wound healing dressings and drug delivery systems: a review. Journal of Pharmaceutical Sciences, 97(8), 2892–2923.CrossRefGoogle Scholar
  87. 87.
    Velnar, T., Bailey, T., & Smrkolj, V. (2009). The wound healing process: an overview of the cellular and molecular mechanisms. Journal of International Medical Research, 37(5), 1528–1542.CrossRefGoogle Scholar
  88. 88.
    Brown, A. (2015). Phases of the wound healing process. Nursing Times, 111(46), 12–13.Google Scholar
  89. 89.
    Eming, S. A., Martin, P., & Tomic-Canic, M. (2014). Wound repair and regeneration: mechanisms, signaling, and translation. Science Translational Medicine, 6(265), 265sr266.CrossRefGoogle Scholar
  90. 90.
    Zhu, X., Zhang, Y., & Hu, C. (2001). Study on the molecular mechanisms involved in the increased collagen synthesis by platelet-derived wound healing factors during wound healing in alloxaninduced diabetic rat. Zhongguo xiu fu chong jian wai ke za zhi= Zhongguo xiufu chongjian waike zazhi= Chinese Journal of Reparative and Reconstructive Surgery, 15(4), 223–226.Google Scholar
  91. 91.
    Epstein, F. H., Singer, A. J., & Clark, R. A. (1999). Cutaneous wound healing. New England Journal of Medicine, 341(10), 738–746.CrossRefGoogle Scholar
  92. 92.
    Falanga, V. (2005). Wound healing and its impairment in the diabetic foot. The Lancet, 366(9498), 1736–1743.CrossRefGoogle Scholar
  93. 93.
    Tamayol, A., Akbari, M., Zilberman, Y., Comotto, M., Lesha, E., Serex, L., Bagherifard, S., Chen, Y., Fu, G., & Ameri, S. K. (2016). Flexible pH‐sensing hydrogel fibers for epidermal applications. Advanced Healthcare Materials, 5(6), 711–719.CrossRefGoogle Scholar
  94. 94.
    Rahimi, R., Ochoa, M., Tamayol, A., Khalili, S., Khademhosseini, A., & Ziaie, B. (2017). Highly stretchable potentiometric pH sensor fabricated via laser carbonization and machining of Carbon−Polyaniline composite. ACS Applied Materials & Interfaces, 9(10), 9015–9023.CrossRefGoogle Scholar
  95. 95.
    Oh, J. H., Hong, S. Y., Park, H., Jin, S. W., Jeong, Y. R., Oh, S. Y., Yun, J., Lee, H., Kim, J. W., & Ha, J. S. (2018). Fabrication of high-sensitivity skin-attachable temperature sensors with bioinspired microstructured adhesive. ACS Applied Materials & Interfaces, 10(8), 7263–7270.CrossRefGoogle Scholar
  96. 96.
    Mostafalu, P., Lenk, W., Dokmeci, M. R., Ziaie, B., Khademhosseini, A., & Sonkusale, S. R. (2015). Wireless flexible smart bandage for continuous monitoring of wound oxygenation. IEEE Transactions on Biomedical Circuits and Systems, 9(5), 670–677.CrossRefGoogle Scholar
  97. 97.
    Mostafalu, P., Tamayol, A., Rahimi, R., Ochoa, M., Khalilpour, A., Kiaee, G., Yazdi, I. K., Bagherifard, S., Dokmeci, M. R., Ziaie, B., Sonkusale, S. R., & Khademhosseini, A. (2018). Smart bandage for monitoring and treatment of chronic wounds. Small, 14(33), 1703509.CrossRefGoogle Scholar
  98. 98.
    Dowd, S. E., Wolcott, R. D., Sun, Y., McKeehan, T., Smith, E., & Rhoads, D. (2008). Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS One, 3(10), e3326.CrossRefGoogle Scholar
  99. 99.
    Davies, C. E., Wilson, M. J., Hill, K. E., Stephens, P., Hill, C. M., Harding, K. G., & Thomas, D. W. (2001). Use of molecular techniques to study microbial diversity in the skin: chronic wounds reevaluated. Wound Repair and Regeneration, 9(5), 332–340.CrossRefGoogle Scholar
  100. 100.
    Dargaville, T. R., Farrugia, B. L., Broadbent, J. A., Pace, S., Upton, Z., & Voelcker, N. H. (2013). Sensors and imaging for wound healing: a review. Biosensors and Bioelectronics, 41, 30–42.CrossRefGoogle Scholar
  101. 101.
    Healy, B., & Freedman, A. (2006). ABC of wound healing: Infections. BMJ: British Medical Journal, 332(7545), 838.CrossRefGoogle Scholar
  102. 102.
    Burd, A., Kwok, C. H., Hung, S. C., Chan, H. S., Gu, H., Lam, W. K., & Huang, L. (2007). A comparative study of the cytotoxicity of silver‐based dressings in monolayer cell, tissue explant, and animal models. Wound Repair and Regeneration, 15(1), 94–104.CrossRefGoogle Scholar
  103. 103.
    Nasajpour, A., Ansari, S., Rinoldi, C., Rad, A. S., Aghaloo, T., Shin, S. R., Mishra, Y. K., Adelung, R., Swieszkowski, W., & Annabi, N. (2018). A multifunctional polymeric periodontal membrane with osteogenic and antibacterial characteristics. Advanced Functional Materials, 28(3), 1703437.CrossRefGoogle Scholar
  104. 104.
    Pant, J., Goudie, M., Brisbois, E., & Handa, H. (2016). Nitric oxide-releasing polyurethanes. In S. L. Cooper & J. Guan (Eds.), Advances in polyurethane biomaterials (pp. 471–550). Duxford: Woodhead Publishing.Google Scholar
  105. 105.
    Brisbois, E. J., Bayliss, J., Wu, J., Major, T. C., Xi, C., Wang, S. C., Bartlett, R. H., Handa, H., & Meyerhoff, M. E. (2014). Optimized polymeric film-based nitric oxide delivery inhibits bacterial growth in a mouse burn wound model. Acta Biomaterialia, 10(10), 4136–4142.CrossRefGoogle Scholar
  106. 106.
    Masters, K. S. B., Leibovich, S. J., Belem, P., West, J. L., & Poole-Warren, L. A. (2002). Effects of nitric oxide releasing poly (vinyl alcohol) hydrogel dressings on dermal wound healing in diabetic mice. Wound Repair and Regeneration, 10(5), 286–294.CrossRefGoogle Scholar
  107. 107.
    Carpenter, A. W., & Schoenfisch, M. H. (2012). Nitric oxide release: Part II. Therapeutic applications. Chemical Society Reviews, 41(10), 3742–3752.CrossRefGoogle Scholar
  108. 108.
    Saghazadeh, S., Rinoldi, C., Schot, M., Kashaf, S. S., Sharifi, F., Jalilian, E., Nuutila, K., Giatsidis, G., Mostafalu, P., & Derakhshandeh, H. (2018). Drug delivery systems and materials for wound healing applications. Advanced Drug Delivery Reviews, 127, 138–166.CrossRefGoogle Scholar
  109. 109.
    Simões, D., Miguel, S. P., Ribeiro, M. P., Coutinho, P., Mendonça, A. G., & Correia, I. J. (2018). Recent advances on antimicrobial wound dressing: A review. European Journal of Pharmaceutics and Biopharmaceutics, 127, 130–141.Google Scholar
  110. 110.
    Han, G., & Ceilley, R. (2017). Chronic wound healing: a review of current management and treatments. Advances in Therapy, 34(3), 599–610.CrossRefGoogle Scholar
  111. 111.
    Trupp, S., Alberti, M., Carofiglio, T., Lubian, E., Lehmann, H., Heuermann, R., Yacoub-George, E., Bock, K., & Mohr, G. (2010). Development of pH-sensitive indicator dyes for the preparation of micro-patterned optical sensor layers. Sensors and Actuators B: Chemical, 150(1), 206–210.CrossRefGoogle Scholar
  112. 112.
    Mohr, G. J., Müller, H., Bussemer, B., Stark, A., Carofiglio, T., Trupp, S., Heuermann, R., Henkel, T., Escudero, D., & González, L. (2008). Design of acidochromic dyes for facile preparation of pH sensor layers. Analytical and Bioanalytical Chemistry, 392(7–8), 1411–1418.CrossRefGoogle Scholar
  113. 113.
    Kassal, P., Kim, J., Kumar, R., de Araujo, W. R., Steinberg, I. M., Steinberg, M. D., & Wang, J. (2015). Smart bandage with wireless connectivity for uric acid biosensing as an indicator of wound status. Electrochemistry Communications, 56, 6–10.CrossRefGoogle Scholar
  114. 114.
    James, T. J., Hughes, M. A., Cherry, G. W., & Taylor, R. P. (2003). Evidence of oxidative stress in chronic venous ulcers. Wound Repair and Regeneration, 11(3), 172–176.CrossRefGoogle Scholar
  115. 115.
    Sridhar, V., & Takahata, K. (2009). A hydrogel-based passive wireless sensor using a flex-circuit inductive transducer. Sensors and Actuators A: Physical, 155(1), 58–65.CrossRefGoogle Scholar
  116. 116.
    Sen, C. K. (2009). Wound healing essentials: let there be oxygen. Wound Repair and Regeneration, 17(1), 1–18.MathSciNetCrossRefGoogle Scholar
  117. 117.
    Li, Z., Roussakis, E., Koolen, P. G., Ibrahim, A. M., Kim, K., Rose, L. F., Wu, J., Nichols, A. J., Baek, Y., & Birngruber, R. (2014). Non-invasive transdermal two-dimensional mapping of cutaneous oxygenation with a rapid-drying liquid bandage. Biomedical Optics Express, 5(11), 3748–3764.CrossRefGoogle Scholar
  118. 118.
    Winter, G. D. (1962). Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature, 193(4812), 293.CrossRefGoogle Scholar
  119. 119.
    McColl, D., Cartlidge, B., & Connolly, P. (2007). Real-time monitoring of moisture levels in wound dressings in vitro: An experimental study. International Journal of Surgery, 5(5), 316–322.CrossRefGoogle Scholar
  120. 120.
    Milne, S. D., Seoudi, I., Al Hamad, H., Talal, T. K., Anoop, A. A., Allahverdi, N., Zakaria, Z., Menzies, R., & Connolly, P. (2016). A wearable wound moisture sensor as an indicator for wound dressing change: an observational study of wound moisture and status. International Wound Journal, 13(6), 1309–1314.CrossRefGoogle Scholar
  121. 121.
    Mehmood, N., Hariz, A., Templeton, S., & Voelcker, N. H. (2015). A flexible and low power telemetric sensing and monitoring system for chronic wound diagnostics. Biomedical Engineering Online, 14(1), 17.CrossRefGoogle Scholar
  122. 122.
    Mostafalu, P., Tamayol, A., Rahimi, R., Ochoa, M., Khalilpour, A., Kiaee, G., Yazdi, I. K., Bagherifard, S., Dokmeci, M. R., & Ziaie, B. (2018). Smart bandage for monitoring and treatment of chronic wounds. Small, 14(33), 1703509.CrossRefGoogle Scholar
  123. 123.
    Bandodkar, A. J., Jeerapan, I., & Wang, J. (2016). Wearable chemical sensors: Present challenges and future prospects. Acs Sensors, 1(5), 464–482.CrossRefGoogle Scholar
  124. 124.
    Han, S. T., Peng, H., Sun, Q., Venkatesh, S., Chung, K. S., Lau, S. C., Zhou, Y., & Roy, V. (2017). An overview of the development of flexible sensors. Advanced Materials, 29(33), 1700375.CrossRefGoogle Scholar
  125. 125.
    Choi, S., Lee, H., Ghaffari, R., Hyeon, T., & Kim, D. H. (2016). Recent advances in flexible and stretchable bio‐electronic devices integrated with nanomaterials. Advanced Materials, 28(22), 4203–4218.CrossRefGoogle Scholar
  126. 126.
    Dias, D., & Paulo Silva Cunha, J. (2018). Wearable health devices—vital sign monitoring, systems and technologies. Sensors, 18(8), 2414.CrossRefGoogle Scholar
  127. 127.
    Wang, Y., Zhu, C., Pfattner, R., Yan, H., Jin, L., Chen, S., Molina-Lopez, F., Lissel, F., Liu, J., & Rabiah, N. I. (2017). A highly stretchable, transparent, and conductive polymer. Science Advances, 3(3), e1602076.CrossRefGoogle Scholar
  128. 128.
    Boubée de Gramont, F., Zhang, S., Tomasello, G., Kumar, P., Sarkissian, A., & Cicoira, F. (2017). Highly stretchable electrospun conducting polymer nanofibers. Applied Physics Letters, 111(9), 093701.CrossRefGoogle Scholar
  129. 129.
    Yang, T., Xie, D., Li, Z., & Zhu, H. (2017). Recent advances in wearable tactile sensors: Materials, sensing mechanisms, and device performance. Materials Science and Engineering: R: Reports, 115, 1–37.CrossRefGoogle Scholar
  130. 130.
    Amjadi, M., Kyung, K. U., Park, I., & Sitti, M. (2016). Stretchable, skin‐mountable, and wearable strain sensors and their potential applications: A review. Advanced Functional Materials, 26(11), 1678–1698.Google Scholar
  131. 131.
    Kassal, P., Steinberg, M. D., & Steinberg, I. M. (2018). Wireless chemical sensors and biosensors: A review. Sensors and Actuators B: Chemical, 266, 228–245.Google Scholar
  132. 132.
    Wu, W., & Haick, H. (2018). Materials and wearable devices for autonomous monitoring of physiological markers. Advanced Materials, 30(41), 1705024.Google Scholar
  133. 133.
    Pappa, A.-M., Parlak, O., Scheiblin, G., Mailley, P., Salleo, A., & Owens, R. M. (2018). Organic electronics for point-of-care metabolite monitoring. Trends in Biotechnology, 36(1), 45–59.CrossRefGoogle Scholar
  134. 134.
    Zhang, S., & Cicoira, F. (2017). Water-enabled healing of conducting polymer films. Advanced Materials, 29(40), 1703098.CrossRefGoogle Scholar
  135. 135.
    Huynh, T. P., Sonar, P., & Haick, H. (2017). Advanced materials for use in soft self‐healing devices. Advanced Materials, 29(19), 1604973.CrossRefGoogle Scholar
  136. 136.
    Huynh, T. P., & Haick, H. (2018). Autonomous flexible sensors for health monitoring. Advanced Materials, 30(50), 1802337.CrossRefGoogle Scholar
  137. 137.
    Xu, M., Obodo, D., & Yadavalli, V. K. (2019). The design, fabrication, and applications of flexible biosensing devices–A review. Biosensors and Bioelectronics, 124, 96–114.Google Scholar
  138. 138.
    Lee, S. P., Klinker, L. E., Ptaszek, L., Work, J., Liu, C., Quivara, F., Webb, C., Dagdeviren, C., Wright, J. A., & Ruskin, J. N. (2015). Catheter-based systems with integrated stretchable sensors and conductors in cardiac electrophysiology. Proceedings of the IEEE, 103(4), 682–689.CrossRefGoogle Scholar
  139. 139.
    Zhou, A., Santacruz, S. R., Johnson, B. C., Alexandrov, G., Moin, A., Burghardt, F. L., et al. (2019). A wireless and artefact-free 128-channel neuromodulation device for closed-loop stimulation and recording in non-human primates. Nature Biomedical Engineering, 3(1), 15.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Shiming Zhang
    • 1
    • 2
    • 3
  • KangJu Lee
    • 1
    • 2
    • 3
  • Marcus Goudie
    • 1
    • 2
    • 3
  • Han-Jun Kim
    • 1
    • 2
    • 3
  • Wujin Sun
    • 1
    • 2
    • 3
  • Junmin Lee
    • 1
    • 2
    • 3
  • Yihang Chen
    • 2
    • 3
    • 4
  • Haonan Ling
    • 2
    • 3
    • 5
  • Zhikang Li
    • 1
    • 2
    • 3
    • 6
  • Cole Benyshek
    • 1
    • 2
    • 3
  • Martin C. Hartel
    • 1
    • 2
    • 3
  • Mehmet R. Dokmeci
    • 2
    • 3
    • 7
  • Ali Khademhosseini
    • 1
    • 2
    • 3
    • 7
    • 8
    Email author
  1. 1.Department of BioengineeringUniversity of California-Los AngelesLos AngelesUSA
  2. 2.Center for Minimally Invasive Therapeutics (C-MIT)University of California-Los AngelesLos AngelesUSA
  3. 3.California NanoSystems Institute, University of California-Los AngelesLos AngelesUSA
  4. 4.Department of Materials Science and EngineeringUniversity of California-Los AngelesLos AngelesUSA
  5. 5.Department of Mechanical and Aerospace EngineeringUniversity of California-Los AngelesLos AngelesUSA
  6. 6.School of Mechanical EngineeringXi’an Jiaotong UniversityXi’anChina
  7. 7.Department of RadiologyUniversity of California-Los AngelesLos AngelesUSA
  8. 8.Department of Chemical and Biomolecular EngineeringUniversity of California-Los AngelesLos AngelesUSA

Personalised recommendations