Electrocardiogram: Acquisition and Analysis for Biological Investigations and Health Monitoring

  • Tai Le
  • Isaac Clark
  • Joseph Fortunato
  • Manuja Sharma
  • Xiaolei Xu
  • Tzung K. Hsiai
  • Hung CaoEmail author


Electrocardiogram (ECG or EKG) was introduced since 1893 by Einthoven, and it has been used for decades in clinical settings for vital sign monitoring as well as cardiac assessment. The ECG signal with its unique characteristic waves of P waves, QRS complexes, and T waves holds important information about the functionalities of the heart. In recent years, advances in electronics and telecommunications have paved the way for out-of-clinic ECG acquisition and monitoring. The rise of advanced data science techniques, such as machine learning, has further opened doors for distanced, home-based, and automated diagnoses. In parallel, micro- and nanotechnology has enabled significant strides in biological investigations using small animal models, such as zebrafish and mouse, uncovering underlying mechanisms of numerous biological processes. In this chapter, we first introduce the basics of electrocardiogram and the methods for acquisition; and then systems used with zebrafish and humans are discussed. Artificial intelligence, specifically machine learning, is brought into the discussion with an emphasis on the use of convolutional neuron networks for classifying ECG patterns of arrhythmic zebrafish mutants. Finally, the chapter recapitulates with the necessity of translating findings from animal research for use with humans as well as a body sensor network with multimodal sensors which may reveal unprecedented connections among physiological parameters.


Electrocardiogram Dry electrode Noncontact electrode Zebrafish Heart regeneration Machine learning 



This work is financially supported by the NSF CAREER Award #1917105 (H.C.) and NIH R41 #OD024874 (H.C.).


  1. 1.
    W. H. Organization. (2018). The top 10 causes of death. Available:
  2. 2.
    Hsieh, P. C., Segers, V. F., Davis, M. E., MacGillivray, C., Gannon, J., Molkentin, J. D., et al. (2007, August). Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nature Medicine, 13, 970–974.CrossRefGoogle Scholar
  3. 3.
    Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., et al. (2009, April 3). Evidence for cardiomyocyte renewal in humans. Science, 324, 98–102.CrossRefGoogle Scholar
  4. 4.
    Bersell, K., Arab, S., Haring, B., & Kuhn, B. (2009, Jul 23). Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell, 138, 257–270.CrossRefGoogle Scholar
  5. 5.
    Giudicessi, J. R., & Ackerman, M. J. (2013, Janunary). Genetic testing in heritable cardiac arrhythmia syndromes: differentiating pathogenic mutations from background genetic noise. Current Opinion in Cardiology, 28, 63–71.CrossRefGoogle Scholar
  6. 6.
    Haïssaguerre, M., Derval, N., Sacher, F., Jesel, L., Deisenhofer, I., de Roy, L., et al. (2008). Sudden cardiac arrest associated with early repolarization. New England Journal of Medicine, 358, 2016–2023.CrossRefGoogle Scholar
  7. 7.
    Lubitz, S. A., & Ellinor, P. T. (2015, May). Next-generation sequencing for the diagnosis of cardiac arrhythmia syndromes. Heart Rhythm : The Official Journal of the Heart Rhythm Society, 12, 1062–1070.CrossRefGoogle Scholar
  8. 8.
    Christophersen, I. E., Magnani, J. W., Yin, X., Barnard, J., Weng, L.-C., Arking, D. E., et al. Fifteen genetic loci associated with the electrocardiographic P wave clinical perspective. Circulation: Genomic and Precision Medicine, 10, e001667, 2017.Google Scholar
  9. 9.
    Nielsen, J. B., Fritsche, L. G., Zhou, W., Teslovich, T. M., Holmen, O. L., Gustafsson, S., et al. (2017). Genome-wide study of atrial fibrillation identifies seven risk loci and highlights biological pathways and regulatory elements involved in cardiac development. The American Journal of Human Genetics, 102(1), 103–115.CrossRefGoogle Scholar
  10. 10.
    Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., et al. (2017). 10 years of GWAS discovery: biology, function, and translation. The American Journal of Human Genetics, 101, 5–22.CrossRefGoogle Scholar
  11. 11.
    Pajkrt, E., Weisz, B., Firth, H. V., & Chitty, L. S. (2004). Fetal cardiac anomalies and genetic syndromes. Prenatal Diagnosis, 24, 1104–1115.CrossRefGoogle Scholar
  12. 12.
    Miniño, A. M., Heron, M. P., Murphy, S. L., & Kochanek, K. D.. (2007). Deaths: Final data for 2004, ed: Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics.Google Scholar
  13. 13.
    Araneta, G., Rosario, M., Schlangen, K. M., Edmonds, L. D., Destiche, D. A., Merz, R. D., et al. (2003). Prevalence of birth defects among infants of Gulf War veterans in Arkansas, Arizona, California, Georgia, Hawaii, and Iowa, 1989–1993. Birth Defects Research Part A: Clinical and Molecular Teratology, 67, 246–260.CrossRefGoogle Scholar
  14. 14.
    Donovan, J. W., Maclennan, R., & Adena, M. (1984). Vietnam service and the risk of congenital anomalies. A case-control study. Obstetrical & Gynecological Survey, 39, 24–25.CrossRefGoogle Scholar
  15. 15.
    Lombó, M., Fernández-Díez, C., González-Rojo, S., Navarro, C., Robles, V., & Herráez, M. P. (2015). Transgenerational inheritance of heart disorders caused by paternal bisphenol A exposure. Environmental Pollution, 206, 667–678.CrossRefGoogle Scholar
  16. 16.
    Poss, K. D., Wilson, L. G., & Keating, M. T. (Dec 13 2002). Heart regeneration in zebrafish. Science, 298, 2188–2190.CrossRefGoogle Scholar
  17. 17.
    Raya, A., Consiglio, A., Kawakami, Y., Rodriguez-Esteban, C., & Izpisua-Belmonte, J. C. (2004). The zebrafish as a model of heart regeneration. Cloning and Stem Cells, 6, 345–351.CrossRefGoogle Scholar
  18. 18.
    Poss, K. D., Wilson, L. G., & Keating, M. T. (2002). Heart regeneration in zebrafish. Science, 298, 2188–2190.CrossRefGoogle Scholar
  19. 19.
    Raya, Á., Consiglio, A., Kawakami, Y., Rodriguez-Esteban, C., & Izpisúa-Belmonte, J. C. (2004). The zebrafish as a model of heart regeneration. Cloning and Stem Cells, 6, 345–351.CrossRefGoogle Scholar
  20. 20.
    Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N., et al. (2011). Transient regenerative potential of the neonatal mouse heart. Science, 331, 1078–1080.CrossRefGoogle Scholar
  21. 21.
    Huang, G. N., Thatcher, J. E., McAnally, J., Kong, Y., Qi, X., Tan, W., et al. (2012). C/EBP transcription factors mediate epicardial activation during heart development and injury. Science, 338, 1599–1603.CrossRefGoogle Scholar
  22. 22.
    Kikuchi, K., Holdway, J. E., Werdich, A. A., Anderson, R. M., Fang, Y., Egnaczyk, G. F., et al. (2010). Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature, 464, 601–605.CrossRefGoogle Scholar
  23. 23.
    Lien, C. L., Harrison, M. R., Tuan, T. L., & Starnes, V. A. (2012). Heart repair and regeneration: Recent insights from zebrafish studies. Wound Repair and Regeneration, 20, 638–646.CrossRefGoogle Scholar
  24. 24.
    Narula, J., Haider, N., Virmani, R., DiSalvo, T. G., Kolodgie, F. D., Hajjar, R. J., et al. (1996). Apoptosis in myocytes in end-stage heart failure. New England Journal of Medicine, 335, 1182–1189.CrossRefGoogle Scholar
  25. 25.
    Olivetti, G., Abbi, R., Quaini, F., Kajstura, J., Cheng, W., Nitahara, J. A., et al. (1997). Apoptosis in the failing human heart. New England Journal of Medicine, 336, 1131–1141.CrossRefGoogle Scholar
  26. 26.
    Rosenzweig, A. (2012). Cardiac regeneration. Science, 338, 1549–1550.CrossRefGoogle Scholar
  27. 27.
    Forsburg, S. L. (Sep 2001). The art and design of genetic screens: Yeast. Nature Reviews. Genetics, 2, 659–668.CrossRefGoogle Scholar
  28. 28.
    St Johnston, D. (Mar 2002). The art and design of genetic screens: Drosophila melanogaster. Nature Reviews. Genetics, 3, 176–188.CrossRefGoogle Scholar
  29. 29.
    Jorgensen, E. M., & Mango, S. E. (May 2002). The art and design of genetic screens: Caenorhabditis elegans. Nature Reviews. Genetics, 3, 356–369.CrossRefGoogle Scholar
  30. 30.
    Angel, P. M., Nusinow, D., Brown, C. B., Violette, K., Barnett, J. V., Zhang, B., et al. (2011, December 22). Networked-based characterization of extracellular matrix proteins from adult mouse pulmonary and aortic valves. Journal of Proteome Research, 10, 812–823.CrossRefGoogle Scholar
  31. 31.
    Lenning, M., Fortunato, J., Le, T., Clark, I., Sherpa, A., Yi, S., et al. (2018). Real-time monitoring and analysis of Zebrafish electrocardiogram with anomaly detection. Sensors, 18, 61.CrossRefGoogle Scholar
  32. 32.
    Ding, Y., Liu, W., Deng, Y., Jomok, B., Yang, J., Huang, W., et al. (2013, February 15). Trapping cardiac recessive mutants via expression-based insertional mutagenesis screening. Circulation Research, 112, 606–617.CrossRefGoogle Scholar
  33. 33.
    Ding, Y., Long, P. A., Bos, J. M., Shih, Y. H., Ma, X., Sundsbak, R. S., et al. (2016). A modifier screen identifies DNAJB6 as a cardiomyopathy susceptibility gene. JCI Insight, 1(14), e88797. Scholar
  34. 34.
    Clark, K. J., Balciunas, D., Pogoda, H. M., Ding, Y., Westcot, S. E., Bedell, V. M., et al. (2011, Jun). In vivo protein trapping produces a functional expression codex of the vertebrate proteome. Nature Methods, 8, 506–515.CrossRefGoogle Scholar
  35. 35.
    Mathur, P., & Guo, S. (2010). Use of zebrafish as a model to understand mechanisms of addiction and complex neurobehavioral phenotypes. Neurobiology of Disease, 40, 66–72.CrossRefGoogle Scholar
  36. 36.
    Ninkovic, J., & Bally-Cuif, L. (2006). The zebrafish as a model system for assessing the reinforcing properties of drugs of abuse. Methods, 39, 262–274.CrossRefGoogle Scholar
  37. 37.
    Knecht, A. L., Truong, L., Marvel, S. W., Reif, D. M., Garcia, A., Lu, C., et al. (2017). Transgenerational inheritance of neurobehavioral and physiological deficits from developmental exposure to benzo [a] pyrene in zebrafish. Toxicology and Applied Pharmacology, 329, 148–157.CrossRefGoogle Scholar
  38. 38.
    Cao, H., Yu, F., Zhao, Y., Zhang, X., Tai, J., Lee, J., et al. (2014). Wearable multi-channel microelectrode membranes for elucidating electrophysiological phenotypes of injured myocardium. Integrative Biology: Quantitative Biosciences from Nano to Macro, 6, 789–795.CrossRefGoogle Scholar
  39. 39.
    Yu, F., Zhao, Y., Gu, J., Quigley, K. L., Chi, N. C., Tai, Y.-C., et al. (2012). Flexible microelectrode arrays to interface epicardial electrical signals with intracardial calcium transients in zebrafish hearts. Biomedical Microdevices, 14, 357–366.CrossRefGoogle Scholar
  40. 40.
    Forouhar, A., Hove, J., Calvert, C., Flores, J., Jadvar, H., & Gharib, M. (2004). Electrocardiographic characterization of embryonic zebrafish. In Engineering in Medicine and Biology Society, 2004. IEMBS'04. 26th Annual International Conference of the IEEE, 2004, pp. 3615–3617.Google Scholar
  41. 41.
    Milan, D. J., & MacRae, C. A. (2005). Animal models for arrhythmias. Cardiovascular Research, 67, 426–437.CrossRefGoogle Scholar
  42. 42.
    Sun, P., Zhang, Y., Yu, F., Parks, E., Lyman, A., Wu, Q., et al. (2009). Micro-electrocardiograms to study post-ventricular amputation of zebrafish heart. Annals of Biomedical Engineering, 37, 890–901.CrossRefGoogle Scholar
  43. 43.
    Yu, F., Huang, J., Adlerz, K., Jadvar, H., Hamdan, M. H., Chi, N., et al. (2010). Evolving cardiac conduction phenotypes in developing zebrafish larvae: Implications to drug sensitivity. Zebrafish, 7, 325–331.CrossRefGoogle Scholar
  44. 44.
    Shier, D. N., Butler, J. L., & Lewis, R. (2011). Hole’s essentials of human anatomy and physiology. McGraw-Hill Higher Education. Pennsylvania Plaza New York City.Google Scholar
  45. 45.
    Widmaier, E. P., Raff, H., & Strang, K. T. (2006). Vander’s human physiology: The mechanisms of body function (Vol. 10, pp. 454–455). New York: McGraw-Hill.Google Scholar
  46. 46.
  47. 47.
    Klabunde, R. E. (2011). Cardiovascular physiology concepts: Wolters Kluwer Health/Lippincott Williams & Wilkins.Google Scholar
  48. 48.
    Sharma, M., Barbosa, K., Ho, V., Griggs, D., Ghirmai, T., Krishnan, S. K., et al. (2017). Cuff-less and continuous blood pressure monitoring: A methodological review. Technologies, 5, 21.CrossRefGoogle Scholar
  49. 49.
    Le, T., Han, H. D., Hoang, T. H., Nguyen, V. C., & Nguyen, C. K. (2016). A low cost mobile ECG monitoring device using two active dry electrodes. In 2016 IEEE Sixth International Conference on Communications and Electronics (ICCE), 2016, pp. 271–276.Google Scholar
  50. 50.
    Sharma, M., Ritchie, P., Ghirmai, T., Cao, H., & Lau, M. P. (2017) Unobtrusive acquisition and extraction of fetal and maternal ECG in the home setting. In SENSORS, 2017 IEEE, 2017, pp. 1–3.Google Scholar
  51. 51.
    Neuman, M. R. (1998). Biopotential amplifiers. In J. G. Webster (Ed.), Medical instrumentation: Application and design (pp. 233–286). New York: Wiley.Google Scholar
  52. 52.
    Merletti, R., Botter, A., Troiano, A., Merlo, E., & Minetto, M. A. (2009). Technology and instrumentation for detection and conditioning of the surface electromyographic signal: State of the art. Clinical Biomechanics, 24, 122–134.CrossRefGoogle Scholar
  53. 53.
    Chi, Y. M., Jung, T. P., & Cauwenberghs, G. (2010). Dry-contact and noncontact biopotential electrodes: Methodological review. IEEE Reviews in Biomedical Engineering, 3, 106–119.CrossRefGoogle Scholar
  54. 54.
    Tseng, K. C., Lin, B. S., Liao, L. D., Wang, Y. T., & Wang, Y. L. (2014). Development of a wearable mobile electrocardiogram monitoring system by using novel dry foam electrodes. IEEE Systems Journal, 8, 900–906.CrossRefGoogle Scholar
  55. 55.
    Liao, L.-D., Wang, I.-J., Chen, S.-F., Chang, J.-Y., & Lin, C.-T. (2011). Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation. Sensors, 11, 5819.CrossRefGoogle Scholar
  56. 56.
    Lin, B. S., Chou, W., Wang, H. Y., Huang, Y. J., & Pan, J. S. (2013). Development of novel non-contact electrodes for mobile electrocardiogram monitoring system. IEEE Journal of Translational Engineering in Health and Medicine, 1, 1–8.Google Scholar
  57. 57.
    Ribeiro, D. M. D., Fu, L. S., Carlos, L. A. D., & Cunha, J. P. S. (2011). A novel dry active biosignal electrode based on an hybrid organic-inorganic interface material. IEEE Sensors Journal, 11, 2241–2245.CrossRefGoogle Scholar
  58. 58.
    Wang, Y., Pei, W., Guo, K., Gui, Q., Li, X., Chen, H., et al. (2011, October 19). Dry electrode for the measurement of biopotential signals. SCIENCE CHINA Information Sciences, 54, 2435.CrossRefGoogle Scholar
  59. 59.
    Sun, Y., & Yu, X. B. (2016). Capacitive biopotential measurement for electrophysiological signal acquisition: A review. IEEE Sensors Journal, 16, 2832–2853.CrossRefGoogle Scholar
  60. 60.
    Cömert, A., Honkala, M., & Hyttinen, J. (2013, April 08). Effect of pressure and padding on motion artifact of textile electrodes. Biomedical Engineering Online, 12, 26.CrossRefGoogle Scholar
  61. 61.
    Bandodkar, A. J., & Wang, J. (2014). Non-invasive wearable electrochemical sensors: A review. Trends in Biotechnology, 32, 363–371.CrossRefGoogle Scholar
  62. 62.
    Anna, G., Stefan, H., & Jörg, M. (2007). Novel dry electrodes for ECG monitoring. Physiological Measurement, 28, 1375.CrossRefGoogle Scholar
  63. 63.
    Lopez-Gordo, M. A., Sanchez-Morillo, D., & Valle, F. P. (2014, July 18). Dry EEG electrodes. Sensors (Basel, Switzerland), 14, 12847–12870.CrossRefGoogle Scholar
  64. 64.
    Chi, Y. M., & Cauwenberghs, G. (2009). Micropower non-contact EEG electrode with active common-mode noise suppression and input capacitance cancellation. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009, pp. 4218–4221.Google Scholar
  65. 65.
    Chi, Y. M., Maier, C., & Cauwenberghs, G. (2011). Ultra-high input impedance, low noise integrated amplifier for noncontact biopotential sensing. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 1, 526–535.CrossRefGoogle Scholar
  66. 66.
    Griggs, D., Sharma, M., Naghibi, A., Wallin, C., Ho, V., Barbosa, K., et al. (2016). Design and development of continuous cuff-less blood pressure monitoring devices. In SENSORS, 2016 IEEE, 2016, pp. 1–3.Google Scholar
  67. 67.
    Schossow, D., Ritchie, P., Cao, H., Chiao, J.-C., Yang, J., & Xu, X. (2017). A novel design to power the micro-ECG sensor implanted in adult zebrafish. In Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017 IEEE International Symposium on, 2017, pp. 1681–1682.Google Scholar
  68. 68.
    Gruber, S., Le, T., Huerta, M., Wilson, K., Yang, J., Xu, X., et al.. (2018). Characterization of passive wireless electrocardiogram acquisition in Adult Zebrafish. In 2018 IEEE International Microwave Biomedical Conference (IMBioC), 2018, pp. 115–117.Google Scholar
  69. 69.
    Cao, H., Landge, V., Tata, U., Seo, Y.-S., Rao, S., Tang, S.-J., et al. (2012). An implantable, batteryless, and wireless capsule with integrated impedance and pH sensors for gastroesophageal reflux monitoring. IEEE Transactions on Biomedical Engineering, 59, 3131–3139.CrossRefGoogle Scholar
  70. 70.
    Gruber, S., Schossow, D., Lin, C.-y., Ho, C. H., Jeong, C., Lau, T. L., et al. (2017). Wireless power transfer for ECG monitoring in freely-swimming Zebrafish, presented at the IEEE Sensors, Glasgow, Scotland, 2017.Google Scholar
  71. 71.
    Brunger, J. M., Zutshi, A., Willard, V. P., Gersbach, C. A., & Guilak, F. (2017). CRISPR/Cas9 editing of murine induced pluripotent stem cells for engineering inflammation-resistant tissues. Arthritis & Rheumatology, 69, 1111–1121.CrossRefGoogle Scholar
  72. 72.
    Dimarco, J. P., & Philbrick, J. T. (1990). Use of ambulatory electrocardiographic (Holter) monitoring. Annals of Internal Medicine, 113, 53–68.CrossRefGoogle Scholar
  73. 73.
    Zheng, J. W., Zhang, Z. B., Wu, T. H., & Zhang, Y. (2007). A wearable mobihealth care system supporting real-time diagnosis and alarm. Medical & Biological Engineering & Computing, 45, 877–885.CrossRefGoogle Scholar
  74. 74.
    Piwek, L., Ellis, D. A., Andrews, S., & Joinson, A. (2016). The rise of consumer health wearables: Promises and barriers. PLoS Medicine, 13, e1001953.CrossRefGoogle Scholar
  75. 75.
    Milošević, M., Shrove, M. T., & Jovanov, E. (2011). “Applications of smartphones for ubiquitous health monitoring and wellbeing management,” JITA-Journal of Information Technology and Applications 1, 7–15.Google Scholar
  76. 76.
    Lee, Y.-G., Jeong, W. S., & Yoon, G. (2012). Smartphone-based mobile health monitoring. Telemedicine and e-Health, 18, 585–590.CrossRefGoogle Scholar
  77. 77.
    Cohrs, K. M., Dancy, J., Besko, D. P., Lohrman, L. L., & Miller, R. M. (2017). Combined strap and cradle for wearable medical monitor. ed: Google Patents, 2017.Google Scholar
  78. 78.
    Le, T., Huerta, M., Moravec, A., & Cao, H. (2018). Wireless passive monitoring of electrocardiogram in firefighters. In 2018 IEEE International Microwave Biomedical Conference (IMBioC), 2018, pp. 121–123.Google Scholar
  79. 79.
    Benharref, A., & Serhani, M. A. (2014). Novel cloud and SOA-based framework for E-Health monitoring using wireless biosensors. IEEE Journal of Biomedical and Health Informatics, 18, 46–55.CrossRefGoogle Scholar
  80. 80.
    Deo, R. C. (2015). Machine learning in medicine. Circulation, 132, 1920–1930.CrossRefGoogle Scholar
  81. 81.
    Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the future — Big data, machine learning, and clinical medicine. New England Journal of Medicine, 375, 1216–1219.CrossRefGoogle Scholar
  82. 82.
    (2018). NIH Data Sharing Repositories [Product, Program, and Project Descriptions]. Available:
  83. 83.
    Géron, A. l. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow: Concepts, tools, and techniques to build intelligent systems (1st ed.). Sebastopol: O’Reilly Media.Google Scholar
  84. 84.
    Waljee, A. K., & Higgins, P. D. R. (2010, 06/03/online). Machine learning in medicine: A primer for physicians. The American Journal Of Gastroenterology, 105, 1224.CrossRefGoogle Scholar
  85. 85.
    Szegedy, V. V. C., Ioffe, S., Shlens, J., & Wojna, Z. (2015). Rethinking the inception architecture for computer vision, 2015.Google Scholar
  86. 86.
    Pandit, D., Zhang, L., Aslam, N., Liu, C., Hossain, A., & Chattopadhyay, S. (2014) An efficient abnormal beat detection scheme from ECG signals using neural network and ensemble classifiers. In The 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA 2014), 2014, pp. 1–6.Google Scholar
  87. 87.
    Gupta, A., Thomas, B., Kumar, P., Kumar, S., & Kumar, Y. (2014). Neural network based indicative ECG classification, In 2014 5th International Conference – Confluence The Next Generation Information Technology Summit (Confluence), 2014, pp. 277–279.Google Scholar
  88. 88.
    Jun, H. J. P. T. J., Minh, N. H., Kim, D., & Kim, Y. H. (2016). Premature ventricular contraction beat detection with deep neural networks. In 15th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 859–864.Google Scholar
  89. 89.
    Halevy, A., Norvig, P., & Pereira, F. (2009). “The unreasonable effectiveness of data,” IEEE Intelligent Systems, 24, 8-12.Google Scholar
  90. 90.
    Park, J. Y., Noh, Y.-K., Choi, B. G., Rha, S.-W., & Kim, K. E. (2015). TCTAP A-010 a machine learning-based approach to prediction of acute coronary syndrome. Journal of the American College of Cardiology, 65, S6.CrossRefGoogle Scholar
  91. 91.
    Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on Knowledge and Data Engineering, 22, 15.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tai Le
    • 1
  • Isaac Clark
    • 1
  • Joseph Fortunato
    • 1
  • Manuja Sharma
    • 2
  • Xiaolei Xu
    • 3
  • Tzung K. Hsiai
    • 4
  • Hung Cao
    • 1
    • 5
    Email author
  1. 1.Electrical Engineering and Computer Science, University of California IrvineIrvineUSA
  2. 2.Electrical Engineering, University of WashingtonSeattleUSA
  3. 3.Cardiology, Mayo ClinicRochesterUSA
  4. 4.Cardiology, University of California Los AngelesLos AngelesUSA
  5. 5.Biomedical Engineering, University of California IrvineIrvineUSA

Personalised recommendations