Global Climate Change Outlook

  • Leonel Jorge Ribeiro NunesEmail author
  • Catarina Isabel Rodrigues Meireles
  • Carlos José Pinto Gomes
  • Nuno Manuel Cabral de Almeida Ribeiro
Part of the SpringerBriefs in Environmental Science book series (BRIEFSENVIRONMENTAL)


Climate change is a reality that affects the daily lives of communities around the world, mainly due to the increasingly frequent occurrence of extreme weather phenomena. However, there are other concerns caused by climate change, notably those caused by crop and forest crop growth cycles, and which will be addressed in a separate chapter. Thus, in this chapter the theme is framed, highlighting some examples of situations that occurred on a large scale and all over the world, related to profound changes in climate, with anthropic origin.


Earth systems Anthropic actions Case studies Climate evolution 


  1. Boserup E (2017) The conditions of agricultural growth: the economics of agrarian change under population pressure. Routledge, AbingdonGoogle Scholar
  2. Change C (2016) What climate changeGoogle Scholar
  3. Crate SA, Nuttall M (2016) Anthropology and climate change: from encounters to actions. Routledge, AbingdonCrossRefGoogle Scholar
  4. Dale VH et al (2001) Climate change and forest disturbances: climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. AIBS Bull 51(9):723–734Google Scholar
  5. De Dios VR, Fischer C, Colinas C (2007) Climate change effects on Mediterranean forests and preventive measures. New Forests 33(1):29–40CrossRefGoogle Scholar
  6. Desbureaux S, Damania R (2018) Rain, forests and farmers: evidence of drought induced deforestation in Madagascar and its consequences for biodiversity conservation. Biol Cons 221:357–364CrossRefGoogle Scholar
  7. Engram M, Arp CD, Jones BM, Ajadi OA, Meyer FJ (2018) Analyzing floating and bedfast lake ice regimes across Arctic Alaska using 25 years of space-borne SAR imagery. Remote Sens Environ 209:660–676CrossRefGoogle Scholar
  8. EOI (s.d.). Deforestation in Madagascar: a threat to its biodiversity. Available:
  9. Hansen K (2017) The rise and fall of Africa’s Great Lake: scientists try to understand the fluctuations of Lake Chad: feature articlesGoogle Scholar
  10. Hui D, Deng Q, Tian H, Luo Y (2017) Climate change and carbon sequestration in forest ecosystems. In: Handbook of climate change mitigation and adaptation, pp 555–594Google Scholar
  11. IPOC (2014) Change, “IPCC,” Climate changeGoogle Scholar
  12. IPOC Change (2015) Climate change 2014: mitigation of climate change. Cambridge University Press, CambridgeGoogle Scholar
  13. Jin Q, Wei J, Yang Z-L, Lin P (2017) Irrigation-induced environmental changes around the Aral Sea: an integrated view from multiple satellite observations. Remote Sens 9(9):900CrossRefGoogle Scholar
  14. JN, Clima de Portugal está a ficar como o de Marrocos ou da Tunísia. Accessed on: 25/08/2018. Available:
  15. Keck A (2012, 29/08/2018). NASA sees new salt in an ancient sea. Available:–04-nasa-salt-ancient-sea.html
  16. Kiro Y et al (2017) Relationships between lake-level changes and water and salt budgets in the Dead Sea during extreme aridities in the Eastern Mediterranean. Earth Planet Sci Lett 464:211–226CrossRefGoogle Scholar
  17. Kuser Olsen V et al (2018) An approach for improving flood risk communication using realistic interactive visualisation. J Flood Risk Manage 11:S783–S793CrossRefGoogle Scholar
  18. (s.d., 02/09/2018). Tavy agriculture. Available:
  19. NOAA, Mean Sea Level Trend 210–021 Cascais, Portugal, ed. USA: NOAA, s.d.Google Scholar
  20. Pecl GT et al (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355(6332):eaai9214Google Scholar
  21. Raval A, Ramanathan V (1989) Observational determination of the greenhouse effect. Nature 342(6251):758CrossRefGoogle Scholar
  22. Rodhe H (1990) A comparison of the contribution of various gases to the greenhouse effect. Science 248(4960):1217–1219CrossRefGoogle Scholar
  23. Rosenzweig C, Hillel D (1998) Climate change and the global harvest: potential impacts of the greenhouse effect on agriculture. Oxford University Press, OxfordGoogle Scholar
  24. RTP, Litoral português em risco com a subida crescente do nível das águas do mar. Accessed on: 24/08/2018. Available:
  25. Simurgtravel (s.d., 27/08/2018). The Aral Sea. Available
  26. Stocker TF et al (2013) Climate change 2013: the physical science basis. Working group i contribution to the fifth assessment report of the intergovernmental panel on climate change 2013.
  27. Toimil A, Díaz-Simal P, Losada IJ, Camus P (2018) Estimating the risk of loss of beach recreation value under climate change. Tour Manag 68:387–400CrossRefGoogle Scholar
  28. U. N. P. Service. (s.d., 27/08/2018). Efecto Invernadero inducido por el ser humano. Available
  29. Ventura C, Sousa J, Fernandes A (2017) Os estuários e as alterações climáticas: impactes da subida do nível médio das águas do mar em Vila Franca de Xira. GOT, Revista de Geografia e Ordenamento do Território 11:327–350Google Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Leonel Jorge Ribeiro Nunes
    • 1
    Email author
  • Catarina Isabel Rodrigues Meireles
    • 1
  • Carlos José Pinto Gomes
    • 2
  • Nuno Manuel Cabral de Almeida Ribeiro
    • 3
  1. 1.ICAAM—Instituto de Ciências Agrárias e Ambientais MediterrânicasUniversity of ÉvoraÉvoraPortugal
  2. 2.Departamento de Paisagem Ambiente e Ordenamento and ICAAM—Instituto de Ciências Agrárias e Ambientais MediterrânicasUniversity of ÉvoraÉvoraPortugal
  3. 3.Departamento de Fitotecnia and ICAAM—Instituto de Ciências Agrárias e Ambientais MediterrânicasUniversity of ÉvoraÉvoraPortugal

Personalised recommendations