Towards Intelligent Optimization of Design Strategies of Cyber-Physical Systems: Measuring Efficacy Through Evolutionary Computations

Part of the Studies in Computational Intelligence book series (SCI, volume 872)


Designing of effective cyber-physical system (CPS) encompassing different vertical applications solicits different components of design. Most of the components are uncertain and dynamic in nature. They either could be in the form of hardware sensors, optimization process and their scheduling nature. In this chapter, we investigate various levels of CPS formulation driven by machine learning and evolutionary algorithms with their strategic similarities. We argue that how far intelligent optimization in the level designing a CPS should be viable? Thus, suitability of appropriate evolutionary and machine learning algorithms is discussed in the context of different design uncertainty of CPS. The efficacy of auto-adaptive or self-organization principle is also discussed.


Cyber-physical systems Evolutionary computation Intelligent optimization Design uncertainty Machine learning 


  1. 1.
    Ning, H.S., Liu, H., Ma, J.H., Yang, L.T., Huang, R.H.: Cyber-physical-social-thinking hyperspace based science and technology. Futur. Gener. Comput. Syst. 56, 504–522 (2016)CrossRefGoogle Scholar
  2. 2.
    Botta, A., De Donato, W., Persico, V., Pescap, A.: Integration of cloud computing and Internet of things: a survey. Futur. Gener. Comput. Syst. 56, 684–700 (2016)CrossRefGoogle Scholar
  3. 3.
    Jiang, L., Da Xu, L., Cai, H., Jiang, Z., Bu, F., Xu, B.: An IoT-oriented data storage framework in cloud computing platform. IEEE Trans. Ind. Inf. 10(2), 1443–1451 (2014)CrossRefGoogle Scholar
  4. 4.
    Tang, B., He, H., Ding, Q., Kay, S.: A parametric classification rule based on the exponentially embedded family. IEEE Trans. Neural Netw. Learn. Syst. 26(2), 367–377 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York (2013)zbMATHGoogle Scholar
  6. 6.
    Valero-Mas, J.J., Calvo-Zaragoza, J., Rico-Juan, J.R.: On the suitability of prototype selection methods for kNN classification with distributed data. Neurocomputing 203, 150–160 (2016)CrossRefGoogle Scholar
  7. 7.
    Simula Research Laboratory: Understanding uncertainty in cyber-physical systems: a conceptual model. Technical Report 2015-3 Feb (2016)Google Scholar
  8. 8.
    Wang, G.G., Cai, X., Cui, Z., Min, G., Chen, J.: High performance computing for cyber physical social systems by using evolutionary multi-objective optimization algorithm. IEEE Trans. Emerg. Top. Comput. (2017) in press.
  9. 9.
    Andersson, J., de Lemos, R., Malek, S., Weyns, D.: Modeling dimensions of self-adaptive software systems. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-adaptive Systems. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, Dagstuhl, Germany, pp. 27–47 (2009). CrossRefGoogle Scholar
  10. 10.
    Banerjee, S., Qaheri, H., Bhatt, C.: Handling uncertainty in IoT design: an approach of statistical machine learning with distributed second-order optimization. In: Healthcare Data Analytics and Management Advances in Ubiquitous Sensing Applications for Healthcare, pp. 227–243. Elsevier BV, Amsterdam (2019)Google Scholar
  11. 11.
    Gerostathopoulos, I., Bures,T., Hnetynka, P., Hujecek, A., Plasil, F., Skoda, D.: Strengthening adaptation in cyber-physical systems via meta-adaptation strategies. ACM Trans. Cyber-Phys. Syst. 1(3), 13 (2017)CrossRefGoogle Scholar
  12. 12.
    Ciccozzi, F., Spalazzese, R.: MDE4IoT: Supporting the Internet of things with model-driven engineering. In: International Symposium on Intelligent and Distributed Computing, pp. 67–76 (2016)Google Scholar
  13. 13.
    Guerriero, M., Tajfar, S., Tamburri, D.A., Di Nitto, E.: Towards a model-driven design tool for big data architectures. In: ACM Proceedings of the 2nd International Workshop on BIG Data Software Engineering, pp. 37–43 (2016)Google Scholar
  14. 14.
    Pal, R., Prasanna, V.: The STREAM mechanism for CPS security the case for the smart grid. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(4), 537–550 (2017)CrossRefGoogle Scholar
  15. 15.
    Khan, A.H., Khan, Z.H., Khan, S.H.: Optimized reconfigurable autopilot design for an aerospace CPS. In: Khan, Z.H., Shawkat Ali Zahid Riaz, A.B.M. (eds.) Computational Intelligence for Decision Support in Cyber-Physical Systems, vol. 540. Springer, Heidelberg (2014)Google Scholar
  16. 16.
    Olteanu, S.C., et al.: Fuel cell diagnosis using Takagi-Sugeno observer approach. In: International Conference on Renewable Energy for Developing Countries (REDEC), pp. 1–7 (2012)Google Scholar
  17. 17.
    Neuman, C.: Challenges in security for cyber-physical systems. In: DHS Workshop on Future Directions in Cyber-Physical Systems Security (2009)Google Scholar
  18. 18.
    Pasqualetti, F., Dorfler, F., Bullo, F.: Attack detection and identification in cyber-physical systems –part I: models and fundamental limitations (2012). arXiv preprint arXiv:1202.6144Google Scholar
  19. 19.
    Diaz, J., Bielza, C., Ocana, J.L., Larranaga, P.: Development of a cyber-physical system based on selective Gaussian naïve Bayes model for a self-predict laser surface heat treatment process control. In: Niggemann, O., Beyerer, J. (eds.) Machine Learning for Cyber Physical Systems. Selected Papers from the International Conference ML4CPS (2015)Google Scholar
  20. 20.
    Bockenkamp, A., Weichert, F., Stenzel, J., Lunsch, D.: Towards autonomously navigating and cooperating vehicles in cyber-physical production systems. In: Niggemann, O., Beyerer, J. (eds.) Machine Learning for Cyber Physical Systems. Selected Papers from the International Conference ML4CPS (2015)Google Scholar
  21. 21.
    Walther, C., Beneke, F., Merbach, L., Siebald, H., Hensel, O., Huster, J.: Machine-specific approach for automatic classification of cutting process efficiency. In: Niggemann, O., Beyerer, J. (eds.) Machine Learning for Cyber Physical Systems. Selected Papers from the International Conference ML4CPS (2015)Google Scholar
  22. 22.
    Walther, C.: Multikriteriell evolutionär optimierte Anpassung von unscharfen Modellen zur Klassifikation und Vorhersage auf der Basis hirnelektrischer Narkose-Potentiale. Shaker Verlag, Aachen (2012)zbMATHGoogle Scholar
  23. 23.
    Abbasi, Z., Jonas, M., Banerjee, A., Gupta, S., Varsamopoulos, G.: Evolutionary green computing solutions for distributed cyber physical systems. In: Evolutionary Based Solutions for Green Computing. Studies in Computational Intelligence, vol. 432, pp. 1–28. Springer, Berlin (2013)Google Scholar
  24. 24.
    Pop, P., Raagaard, M.L., Craciunas, S.S., Steiner, W.: Design optimisation of cyber-physical distributed systems using IEEE time-sensitive networks. IET Cyber-Phys. Syst. Theory Appl. 1(1), 86–94 (2016)CrossRefGoogle Scholar
  25. 25.
    Michalewicz, Z.: Quo vadis, evolutionary computation? In: IEEE World Congress on Computational Intelligence, pp. 98–121. Springer, Berlin/Heidelberg (2012)Google Scholar
  26. 26.
    Hofmeyer, H., Davila Delgado, J.M.: Coevolutionary and genetic algorithm based building spatial and structural design. Artif. Intell. Eng. Des. Anal. Manuf. 29, 351–370 (2015)CrossRefGoogle Scholar
  27. 27.
    Van der Vegte, W.F., Vroom, R.W.: Considering cognitive aspects in designing cyber-physical systems: an emerging need for transdisciplinarity. In: Proceedings of the International Workshop on the Future of Transdisciplinary Design TFTD, vol. 13, pp. 41–52 (2013)Google Scholar
  28. 28.
    Ray, A.: Autonomous perception and decision-making in cyber-physical systems. In: 2013 8th International Conference on Computer Science & Education, pp. 1–10. IEEE, Piscataway (2013)Google Scholar
  29. 29.
    Luo, S.: An improved intelligent ant colony algorithm for the reliability optimization problem in cyber-physical systems. J. Softw. 9(1), 20–25 (2014)CrossRefGoogle Scholar
  30. 30.
    Huang, C.,Wang, D., Chawla, N.: Scalable uncertainty-aware truth discovery in big data social sensing applications for cyber-physical systems. IEEE Trans. Big Data PP(99), 1–1 (2017).
  31. 31.
    Khazaeni, Y., Cassandras, C.G.: Event-driven Trajectory optimization for data harvesting in multiagent systems. IEEE Trans. Control Netw. Syst. 5(3), 1335–1348 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Taylor, B.N.: Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results. rev. Diane Publishing, Darby (2009)Google Scholar
  33. 33.
    Cimatti, A., Micheli, A., Roveri, M.: Timelines with temporal uncertainty. In: AAAI (2013)Google Scholar
  34. 34.
    Chattopadhyay, S., Banerjee, A., Banerjee, N.: A data distribution model for large-scale context aware systems. In: International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services, pp. 615–627 (2013)Google Scholar
  35. 35.
    Chattopadhyay, S., Banerjee, A., Yu, B.: A utility-driven data transmission optimization strategy in large scale cyber-physical systems. In: 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE) (May 2017)Google Scholar
  36. 36.
    Sinha, A., Malo, P., Deb, K.: A review on bilevel optimization: from classical to evolutionary approaches and applications (2017), arXiv:1705.06270v1Google Scholar
  37. 37.
    Wu, X., Conejo, A.J.: An efficient tri-level optimization model for electric grid defense planning. IEEE Trans. Power Syst. 32(4), 2984–2994 (2017)CrossRefGoogle Scholar
  38. 38.
    Yang, Z., Cai, L., Lu, W.S.: Practical scheduling algorithms for concurrent transmissions in rate-adaptive wireless networks. In: INFOCOM, IEEE 2010 Proceedings (2010)Google Scholar
  39. 39.
    Yang, M., Li, C., Cai, Z., Guan, J.: Differential evolution with auto-enhanced population diversity. IEEE Trans Cybern. 45(2), 302–315 (2015). CrossRefGoogle Scholar
  40. 40.
    Bogdan, P., Jain, S., Goyal, K., Marculescu, R.: Implantable pace-makers control and optimization via fractional calculus approaches: a cyber-physical systems perspective. In: ICCPS, pp. 23–32 (2012)Google Scholar
  41. 41.
    Hong, J., et al.: Integrated anomaly detection for cyber security of the substations. IEEE Trans. Smart Grid 5(4), 1643–1653 (2014)CrossRefGoogle Scholar
  42. 42.
    Yue, K., et al.: An adaptive discrete event model for cyber-physical system. In: Analytic Virtual Integration of Cyber-Physical Systems Workshop, pp. 9–15 (2010)Google Scholar
  43. 43.
    Hang, C., Manolios, P., Papavasileiou, V.: Synthesizing cyber-physical architectural models with real-time constraints. In: Computer Aided Verification, pp. 441–456. Springer, Berlin (2011)Google Scholar
  44. 44.
    Bujorianu, M.C., Bujorianu, M.L., Barringer, H.: A formal framework for user centric control of probabilistic multi-agent cyber-physical systems. In: International Workshop on Computational Logic in Multi-Agent Systems, pp. 97–116. Springer, Berlin/Heidelberg (2008)Google Scholar
  45. 45.
    Goswami, D., Schneider, R., Chakraborty, S.: Co-design of cyber-physical systems via controllers with flexible delay constraints. In: ASPDAC, pp. 225–230 (2011)Google Scholar
  46. 46.
    Khaitan, S.K., Mccalley, J.: Design techniques and applications of cyberphysical systems: a survey. IEEE Syst. J. 9(2), 350–365 (2014)CrossRefGoogle Scholar
  47. 47.
    Farina, M., Deb, K., Amato, P.: Dynamic multi-objective optimization problems: test cases, approximations, and applications. IEEE Trans. Evol. Comput. 8(5), 425–442 (2004)CrossRefGoogle Scholar
  48. 48.
    Goh, C.K., Tan, K.C.: A competitive-cooperative coevolutionary paradigm for dynamic multi-objective optimization. IEEE Trans. Evol. Comput. 13(1), 103–127 (2009)CrossRefGoogle Scholar
  49. 49.
    Ren, W., Beard, R.W., Atkins, E.M.: Information consensus in multivehicle cooperative control. IEEE Control Syst. 27, 71–82 (2007)CrossRefGoogle Scholar
  50. 50.
    Cao, X., Cheng, P., Chen, J., Sun, Y.: An online optimization approach for control and communication codesign in networked cyber-physical systems. IEEE Trans. Ind. Inf. 9, 439–450 (2013)CrossRefGoogle Scholar
  51. 51.
    Song, Z., Chen, Y., Sastry, C.R., Tas, N.C.: Optimal Observation for Cyber-Physical Systems: A Fisher-Information-Matrix-Based Approach. Springer Science & Business Media, Berlin (2009)zbMATHCrossRefGoogle Scholar
  52. 52.
    Shoukry, Y., Nuzzo, P., Vincentelli, S., Seshia, S.A., Pappas, G.J., Tabuada, P.: SMC: satisfiability modulo convex optimization. In: HSCC’17, Pittsburgh, PA, USA, April 18–20 (2017)Google Scholar
  53. 53.
    Juditsky, A., Nemirovski, A.: First order methods for nonsmooth convex large-scale optimization, II: utilizing problems structure. Optim. Mach. Learn. 30, 149–183 (2011)Google Scholar
  54. 54.
    Guigues, V., Juditsky, A., Nemirovski, A.: Non-asymptotic confidence bounds for the optimal value of a stochastic program. Optim. Methods Softw. 32(5), 1033–1058 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Yuan, Y., Xu, H., Wang, B., et al.: Balancing convergence and diversity in decomposition-based many-objective optimizers. IEEE Trans. Evol. Comput. 20(2), 180–198 (2016)CrossRefGoogle Scholar
  56. 56.
    Hatzakis, I., Wallace, D.: Dynamic multi-objective optimization with evolutionary algorithms: a forward-looking approach. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 1201–1208. ACM, New York (2006)Google Scholar
  57. 57.
    Zhou, A., Jin, Y., Zhang, Q.: A population prediction strategy for evolutionary dynamic multi-objective optimization. IEEE Trans. Cybern. 44(1), 40–53 (2014)CrossRefGoogle Scholar
  58. 58.
    Koo, W.T., Goh, C.K.: A predictive gradient strategy for multi-objective evolutionary algorithms in a fast changing environment. Memetic Comput. 2(2), 87–110 (2010)CrossRefGoogle Scholar
  59. 59.
    Peng, Z., Zheng, J., Zou, J.: A population diversity maintaining strategy based on dynamic environment evolutionary model for dynamic multiobjective optimization. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 274–281. IEEE, Piscataway (2014)Google Scholar
  60. 60.
    Deb, K., Abouhawwash, M.: A optimality theory based proximity measure for set based multi-objective optimization. IEEE Trans. Evol. Comput. 20(4), 515–528 (2016)CrossRefGoogle Scholar
  61. 61.
    Birbil, S.I., Frenk, J.B.G., Still, G.J.: An elementary proof of the Fritz-John and Karush-Kuhn-Tucker conditions in nonlinear programming. Eur. J. Oper. Res. 180(1), 479–484 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Mahdavi-Hezavehi, S., Avgeriou, P., Weyns D.: A classification framework of uncertainty in architecture-based self-adaptive systems with multiple quality requirements. In: Mistrik, I., Ali, N., Kazman, R., Grundy, J., Schmerl, B. (eds.) Managing Trade-offs in Adaptable Software Architectures, pp. 45–78. Morgan Kaufmann, San Francisco (2016)Google Scholar
  63. 63.
    Bussmann, S., Schild, K.: Self-organizing manufacturing control: an industrial application of agent technology. In: Proceedings Fourth International Conference on MultiAgent Systems, Boston, MA, pp. 87–94 (2000)Google Scholar
  64. 64.
    Leitao, P., Barbosa, J.: Adaptive scheduling based on self-organized holonic swarm of schedulers. In: Proceedings of the 23rd IEEE International Symposium on Industrial Electronics, Istanbul, pp. 1706–1711 (2014)Google Scholar
  65. 65.
    Vrba, P., Marik, V.: Capabilities of dynamic reconfiguration of multiagent-based industrial control systems. IEEE Trans. Syst. Man Cybern. A 40(2), 213–223 (2010)CrossRefGoogle Scholar
  66. 66.
    Zhang, Y., Qian, C., Lv, J., Liu, Y.: Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor. IEEE Trans. Ind. Inf. 13(2), 737–747 (2017)CrossRefGoogle Scholar
  67. 67.
    Deb, K., Abouhawwash, M., Seada, H.: A computationally fast convergence measure and implementation foe single, multiple- and many-objective optimization. IEEE Trans. Emerg. Top. Compt. Intell. 1(4), 280–293 (2017)CrossRefGoogle Scholar
  68. 68.
    Yin, Y., Yu, F., Xu, Y., Yu, L., Mu, J.: Network location-aware service recommendation with random walk in cyber-physical systems. Sensors 17, 2059 (2017)CrossRefGoogle Scholar
  69. 69.
    Fang, Z., Mo, H., Wang, Y., Xie, M.: Performance and reliability improvement of cyber-physical systems subject to degraded communication networks through robust optimization. Comput. Ind. Eng. 114, 166–174 (2017)CrossRefGoogle Scholar
  70. 70.
    Akkaya, I.: Data-driven cyber-physical systems via real-time stream analytics and machine learning, Technical Report No. UCB/EECS-2016-159, Electrical Engineering and Computer Sciences University of California at Berkeley, October 25 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.CEDRIC LabConservatoire National des Arts et MetiersParis Cedex 03France
  2. 2.Aurel Vlaicu University of AradAradRomania
  3. 3.University of Petroleum and Energy StudiesDehradunIndia
  4. 4.CNAM-CEDRIC LabConservatoire National des Arts et MetiersParis Cedex 03France

Personalised recommendations