Advertisement

Analyzing Information and Communications Technology National Indices by Using Fuzzy Data Mining Techniques

  • Taymi Ceruto
  • Orenia Lapeira
  • Alejandro Rosete
Chapter
  • 15 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 872)

Abstract

Several indices are available to characterize information and communications technology (ICT) aspects in different countries and regions, such as ICT Development Index, the number of Internet users, and the number of supercomputers in the TOP500 list. In this chapter we show how the flexibility and expressiveness of fuzzy logic can be used to understand these indices and their relationships (by applying fuzzy data mining). Consequently, we obtain several interesting fuzzy patterns that generalize and describe this information (for all the set and for each region) in form of graphs, fuzzy clusters, and fuzzy predicates. In addition, the similarity of different patterns is studied, showing that different types of patterns are more similar than what it is normally assumed.

Keywords

Fuzzy logic Data mining ICT indices Fuzzy clusters Fuzzy rules Fuzzy predicates 

References

  1. 1.
    Ahmad, M., Rana, A.: Fuzzy sets in data mining-a review. Int. J. Comput. Technol. Appl. 4(2), 273–278 (2013)Google Scholar
  2. 2.
    Alam, F., Mehmood, R., Katib, I., Albeshri, A.: Analysis of eight data mining algorithms for smarter Internet of Things (IoT). Proc. Comput. Sci. 98, 437–442 (2016)CrossRefGoogle Scholar
  3. 3.
    Auddy, A., Mukhopadhyay, S.: Data mining on ICT usage in an academic campus: a case study. In: International Conference on Distributed Computing and Internet Technology (ICDCIT). Lecture Notes in Computer Science, vol. 8956, pp. 443–447. Springer, Berlin (2015)Google Scholar
  4. 4.
    Bankole, F., Osei-Bryson, K., Brown, I.: The impact of ICT investments on human development: a regression splines analysis. J. Global Inf. Technol. Manag. 16(2), 59–85 (2013)Google Scholar
  5. 5.
    Belitski, M., Desai, S.: What drives ICT clustering in European cities? J. Technol. Transf. 41(3), 430–450 (2016)CrossRefGoogle Scholar
  6. 6.
    Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Wiswedel, B.: KNIME-the Konstanz information miner: version 2.0 and beyond. ACM SIGKDD Explor. Newslett. 11(1), 26–31 (2009)Google Scholar
  7. 7.
    Cadenas, J., Garrido, M., Martínez, R., Muñoz, E., Bonissone, P.: A fuzzy K-nearest neighbor classifier to deal with imperfect data. Soft Comput. 22(10), 3313–3330 (2018)CrossRefGoogle Scholar
  8. 8.
    Ceruto, T., Lapeira, O., Rosete, A.: Quality measures for fuzzy predicates in conjunctive and disjunctive normal form. Ingeniería e Investigación 3(4), 63–69 (2014)CrossRefGoogle Scholar
  9. 9.
    Cumps, B., Martens, D., De Backer, M., Haesen, R., Viaene, S., Dedene, G., Snoeck, M.: Inferring comprehensible business/ICT alignment rules. Inf. Manag. 46(2), 116–124 (2009)CrossRefGoogle Scholar
  10. 10.
    Doong, S., Ho, S.: The impact of ICT development on the global digital divide. Electr. Commerce Res. Appl. 11(5), 518–533 (2012)CrossRefGoogle Scholar
  11. 11.
    Fernández, A., Lopez, V., del Jesús, M.J., Herrera, F.: Revisiting evolutionary fuzzy systems: taxonomy, applications, new trends and challenges. Knowl.-Based Syst. 80, 109–121 (2015)CrossRefGoogle Scholar
  12. 12.
    Fernández, A., Carmona, C.J., del Jesús, M.J., Herrera, F.: A view on fuzzy systems for big data: progress and opportunities. Int. J. Comput. Intell. Syst. 9(1), 69–80 (2016)CrossRefGoogle Scholar
  13. 13.
    Global Innovation Index (GII). Cornell University, INSEAD, WIPO (2019). Available https://www.globalinnovationindex.org/Home.Cited10Jan2019
  14. 14.
    Gosain, A., Sonika, D.: Performance analysis of various fuzzy clustering algorithms: a review. Proc. Comput. Sci. 79, 100–111 (2016)CrossRefGoogle Scholar
  15. 15.
    Hong, T., Lan, G., Lin, Y., Pan, S.: An effective gradual data-reduction strategy for fuzzy itemset mining. Int. J. Fuzzy Syst. 15, 170–181 (2013)Google Scholar
  16. 16.
    Huarng, K.: A comparative study to classify ICT developments by economies. J. Bus. Res. 64(11), 1174–1177 (2011)CrossRefGoogle Scholar
  17. 17.
    Hullermeier, E.: Does machine learning need fuzzy logic? Fuzzy Sets Syst. 281, 292–299 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    ICT Development Index: IDI International Telecommunication Union (ITU) (2019). Available https://www.itu.int/net4/ITU-D/idi/2017/index.html.Cited25Jan2019
  19. 19.
    Internet Usage Statistics: Miniwatts Marketing Group (2019). Available https://www.internetworldstats.com/stats.htm.Cited21Jan2019
  20. 20.
    Kapila, D., Chopra, V.: A survey on different fuzzy association rule mining techniques. Int. J. Techno. Res. Eng. 2(9), 2001–2007 (2015)Google Scholar
  21. 21.
    Kim, C., Lee, H., Seol, H., Lee, C.: Identifying core technologies based on technological cross-impacts: An association rule mining (ARM) and analytic network process (ANP) approach. Expert Syst. Appl. 38(10), 12,559–12,564 (2011)CrossRefGoogle Scholar
  22. 22.
    Kim, E., Kim, J., Koh, J.: Convergence in information and communication technology (ICT) using patent analysis. J. Inf. Syst. Technol. Manag. 11(1), 53–64 (2014)Google Scholar
  23. 23.
    Kononova, K.: Some aspects of ICT measurement: comparative analysis of E-indexes. In: International Conference on Information & Communication Technologies in Agriculture, Food and Environment (HAICTA), pp. 938–945 (2015)Google Scholar
  24. 24.
    Lechman, E., Marszk, A.: ICT technologies and financial innovations: The case of exchange traded funds in Brazil, Japan, Mexico, South Korea and the United States. Technol. Forecast. Social Change 99, 355–376 (2015)CrossRefGoogle Scholar
  25. 25.
    Lin, J., Li, T., Fournier-Viger, P., Hong, T.: A fast algorithm for mining fuzzy frequent itemsets. J. Intel. Fuzzy Syst. 29(6), 2373–2379 (2015)CrossRefGoogle Scholar
  26. 26.
    Measuring the Information Society Report Pub series/76a34020-en. International Telecommunication Union (ITU) (2019). Available https://www.itu-ilibrary.org/science-and-technology.Cited23Jan2019
  27. 27.
    Nayak, J., Naik, B., Behera, H.S.: Fuzzy C-means (FCM) clustering algorithm: a decade review from 2000 to 2014. Comput. Intel. Data Mining 2, 133–149 (2015)Google Scholar
  28. 28.
    Ogechi, A., Olaniyi, E.: Digital health: ICT and health in Africa. Actual Probl. Econ. 10, 66–83 (2018)Google Scholar
  29. 29.
    Pradhan, R., Mallik, G., Bagchi, T.: Information communication technology (ICT) infrastructure and economic growth: a causality evinced by cross-country panel data. IIMB Manag. Rev. 30(1), 91–103 (2018)CrossRefGoogle Scholar
  30. 30.
    QS World University Rankings: Quacquarelli Symonds (2019). Available https://www.topuniversities.com/university-rankings.Cited14Jan2019 Google Scholar
  31. 31.
    SCImago Journal & Country Rank: SCImago (2019). Available https://www.scimagojr.com.Cited22Jan2019
  32. 32.
    SCImago Institutions Ranking: SCImago (2019). Available http://www.scimagoir.com.Cited22Jan2019
  33. 33.
    Segatori, A., Marcelloni, F., Pedrycz, W.: On distributed fuzzy decision trees for big data. IEEE Trans. Fuzzy Syst. 26(1), 174–192 (2018)CrossRefGoogle Scholar
  34. 34.
    Sepehrdoust, H.: Impact of information and communication technology and financial development on economic growth of OPEC developing economies. Kasetsart J. Soc. Sci. 1–6 (2018). https://doi.org/10.1016/j.kjss.2018.01.008
  35. 35.
    Skryabin, M., Zhang, J., Liu, L., Zhang, D.: How the ICT development level and usage influence student achievement in reading, mathematics, and science. Comput. Educ. 85, 49–58 (2015)CrossRefGoogle Scholar
  36. 36.
    Strohmaier, E., Meuer, H., Dongarra, J., Simon, H.: The top500 list and progress in high-performance computing. Computer 48(11), 42–49 (2015)CrossRefGoogle Scholar
  37. 37.
    TOP500list: NERSC/Lawrence Berkeley National Laboratory, University of Tennessee, University of Mannheim (2019). Available https://www.top500.org/lists/.Cited24Jan2019
  38. 38.
    Witten, I., Frank, E., Hall, M., Pal, C.: Data Mining: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann, Burlington (2016)Google Scholar
  39. 39.
    Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)CrossRefGoogle Scholar
  40. 40.
    Zimmermann, H.: Fuzzy Set Theory-and Its Applications, 4th edn. Springer, Berlin (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Taymi Ceruto
    • 1
  • Orenia Lapeira
    • 2
  • Alejandro Rosete
    • 3
  1. 1.Grupo de Investigación SCoDA (SoftComputing and Data Analysis), Facultad de InformáticaUniversidad Tecnológica de La Habana José Antonio EcheverríaCujaeCuba
  2. 2.Departamento de Ingeniería de Software, Facultad de InformáticaUniversidad Tecnológicade La Habana José Antonio EcheverríaCujaeCuba
  3. 3.Departamento de Inteligencia Artificial e Infraestructura de Sistemas InformáticosUniversidad Tecnológica de La Habana José Antonio EcheverríaCujaeCuba

Personalised recommendations