An Approach of Taxonomy of Multidimensional Cubes Representing Visually Multivariable Data

  • Hong Thi Nguyen
  • Truong Xuan Le
  • Phuoc Vinh TranEmail author
  • Dang Van Pham
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 298)


In data visualization, graphs representing multivariable data on multidimensional coordinates shaped cubes enable human to understand better the significance of data. There are various types of cubes for representing different datasets. The paper aims at classifying kinds of cubes to enable human to design cubes representing multivariable datasets. Mathematically, the functional relations among five groups of variables result in the way to structure cubes. The paper classifies cubes as three kinds by the characteristics of datasets, including non-space, 2D-space, and 3D-space multidimensional cubes. The non-space multidimensional cubes are applied for non-space multivariable datasets with variables of objects, attributes, and times. The 2D-space multidimensional cubes are applied for the datasets of movers or objects located on ground at time units. The 3D-space multidimensional cubes are applied for the datasets of flyers or objects positioned in elevated space at time units. The correlation in space and/or time shown on the cubes enables human to discover new valuable information.


Multidimensional cube Multivariable data Multivariate data Graph representing data Data visualization 



This paper is sponsored by Hochiminh City Open University.


  1. 1.
    Thi Nguyen, H., Thi Pham, T.M., Thi Nguyen, T.A., Thi Tran, A.V., Vinh Tran, P., Van Pham, D.: Two-stage approach to classifying multidimensional cubes for visualization of multivariate data. In: Cong Vinh, P., Alagar, V. (eds.) ICCASA/ICTCC -2018. LNICST, vol. 266, pp. 70–80. Springer, Cham (2019). Scholar
  2. 2.
    Nguyen, H.T., Tran, A.V.T., Nguyen, T.A.T., Vo, L.T., Tran, P.V.: Multivariate cube integrated retinal variable to visually represent multivariable data. EAI Endorsed Trans. Context-Aware Syst. Appl. 4, 1–8 (2017)Google Scholar
  3. 3.
    Nguyen, H.T., Van Thi Tran, A., Thi Nguyen, T.A., Vo, L.T., Tran, P.V.: Multivariate cube for representing multivariable data in visual analytics. In: Cong Vinh, P., Tuan Anh, L., Loan, N.T.T., Vongdoiwang Siricharoen, W. (eds.) ICCASA 2016. LNICST, vol. 193, pp. 91–100. Springer, Cham (2017). Scholar
  4. 4.
    Nguyen, H.T., Tran, P.V.: Multidimensional cube for representing flight data in visualization-based system for tracking flyer. In: The 5th International Conference on Control, Automation and Information Sciences, Ansan, Korea, pp. 132–137 (2016)Google Scholar
  5. 5.
    Tran, P.V., Nguyen, H.T., Tran, T.V.: Approaching multi-dimensional cube for visualization-based epidemic warning system - dengue fever. Presented at the 8th International Conference on Ubiquitous Information Management and Communication, ACM IMCOM 2014, Siem Reap, Cambodia (2014)Google Scholar
  6. 6.
    Nguyen, H.T., Tran, T.V., Tran, P.V., Dang, H.: Multivariate cube for visualization of weather data. Presented at the IEEE 2013 International Conference on Control, Automation and Information Science, ICCAIS 2013, Nha Trang, Vietnam (2013)Google Scholar
  7. 7.
    Tran, P.V., Nguyen, H.T.: Multivariate-space-time cube to visualize multivariate data. Int. J. Geoinformatics 8, 67–74 (2012)Google Scholar
  8. 8.
    Tran, P.V., Nguyen, H.T.: Visualization cube for tracking moving object. Presented at the Computer Science and Information Technology, Information and Electronics Engineering (2011)Google Scholar
  9. 9.
    Peuquet, D.J.: It’s about time: a conceptual framework for the representation of temporal dynamics in geographic information systems. Ann. Assoc. Am. Geogr. 84, 441–461 (1994)CrossRefGoogle Scholar
  10. 10.
    Andrienko, G., Andrienko, N., Bak, P., Keim, D., Kisilevich, S., Wrobel, S.: A conceptual framework and taxonomy of techniques for analyzing movement. J. Vis. Lang. Comput. 22, 213–232 (2011)CrossRefGoogle Scholar
  11. 11.
    Yuan, M.: Representing complex geographic phenomena in GIS. Cartogr. Geogr. Inf. Sci. 28, 83–96 (2001)CrossRefGoogle Scholar
  12. 12.
    Yuan, M., Nara, A., Bothwell, J.: Space–time representation and analytics. Ann. GIS 20, 1–9 (2014)CrossRefGoogle Scholar
  13. 13.
    Jensen, J.R., Jensen, R.R.: Introductory Geographic Information Systems. Pearson Education, London (2013)Google Scholar
  14. 14.
    Chang, K.-T.: Introduction to Geographic Information Systems. McGraw-Hill, New York (2008)Google Scholar
  15. 15.
    Andrienko, N., Andrienko, G., Pelekis, N., Spaccapietra, S.: Basic concepts of movement data. In: Giannotti, F., Pedreschi, D. (eds.) Mobility, Data Mining and Privacy: Geographic Knowledge Discovery, pp. 15–38. Springer, Heidelberg (2008). Scholar
  16. 16.
    Nguyen, H.T., Ngo, H.T., Nguyen, X.V., Nguyen, D.N., Tran, P.V.: An approach to representing movement data. Int. J. Inf. Electron. Eng. 3, 283–287 (2013)Google Scholar
  17. 17.
    Tran, P.V., et al.: Technical report of Vietnam’s national project researching the application of GIS for socio-economic development in Mekong delta during 2001–2005. Vietnam’ Ministry of Science and Technology (2005)Google Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Hong Thi Nguyen
    • 1
  • Truong Xuan Le
    • 2
  • Phuoc Vinh Tran
    • 2
    Email author
  • Dang Van Pham
    • 3
    • 4
  1. 1.University of Information Technology, Vietnam National University - HCMCHo Chi Minh CityVietnam
  2. 2.Hochiminh City Open UniversityHo Chi Minh CityVietnam
  3. 3.Nguyen Tat Thanh UniversityHo Chi Minh CityVietnam
  4. 4.Graduate University of Science and TechnologyHanoiVietnam

Personalised recommendations