Advertisement

Integrating Retinal Variables into Graph Visualizing Multivariate Data to Increase Visual Features

  • Hong Thi Nguyen
  • Lieu Thi Le
  • Cam Thi Ngoc Huynh
  • Thuan Thi My Pham
  • Anh Thi Van Tran
  • Dang Van Pham
  • Phuoc Vinh TranEmail author
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 298)

Abstract

The efficiency of a graph visualizing multivariate data is not only subjectively evaluated by human visual perception but also objectively estimated by visual features of graph. For a designed graph, it is necessary to improve visual features to enable human to extract better information from data. Integrating retinal variables into graph is an approach to increasing visual features of graph. In this study, the constituents of graph are grouped into classes of marks by qualitative and quantitative characteristics. The retinal variables are studied and structured to integrate into the classes of marks. A process of five steps is proposed to increase visual features by integrating retinal variables into graph. The process is illustrated with two case studies, increasing visual features of bus space-time map with qualitative mark classes and increasing visual features of the graph representing the data of hand-foot-mouth epidemic in Binhduong with qualitative and quantitative mark classes.

Keywords

Visual features Retinal variable Visual perception Visualization Multivariate data 

Notes

Acknowledgment

The paper is sponsored by Hochiminh City Open University, Vietnam.

References

  1. 1.
    Few, S.: Tapping the power of visual perception. Perceptual Edge, pp. 1–8, 4 September 2004Google Scholar
  2. 2.
    Dastani, M.: The role of visual perception in data visualization. J. Vis. Lang. Comput. 13, 601–622 (2002)CrossRefGoogle Scholar
  3. 3.
    Green, M.: Toward a Perceptual Science of Multidimensional Data Visualization: Bertin and Beyond. ERGO/GERO Human Factors Science. Citeseer (1998)Google Scholar
  4. 4.
    Few, S.: Data visualization for human perception. In: Soegaard, M., Dam, R.F. (eds.) The Encyclopedia of Human-Computer Interaction, 2nd edn. Aarhus, Denmark (2014)Google Scholar
  5. 5.
    Bertin, J.: General theory, from semiology of graphics. In: Dodge, M., Kitchin, R., Perkins, C. (eds.) The Map Reader. Theories of Mapping Practice and Cartographic Representation, pp. 8–16. Wiley (2011)Google Scholar
  6. 6.
    Bertin, J.: Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin (1983)Google Scholar
  7. 7.
    Card, S.: Information visualization. In: Chi, Ed. (ed.) Information Visualization, PARC 2007, pp. 510–543 (2007)Google Scholar
  8. 8.
    Jensen, J.R., Jensen, R.R.: Introductory Geographic Information Systems. Pearson Education (2013)Google Scholar
  9. 9.
    Raper, J.: Multidimensional Geographic Information Science. Taylor & Francis, London (2000)CrossRefGoogle Scholar
  10. 10.
    Carpendale, M.S.T.: Considering Visual Variables as a Basis for Information Visualisation. Department of Computer science, University of Calgary, Calgary, AB, Canada (2003)Google Scholar
  11. 11.
    Wagemans, J., et al.: A century of gestalt psychology in visual perception II. Conceptual and theoretical foundations. Psychol. Bull. 138, 1218–1252 (2012)CrossRefGoogle Scholar
  12. 12.
    Nguyen, H.T., Pham, T.M.T., Nguyen, T.A.T., Tran, A.V.T., Tran, P.V., Pham, D.V.: Two-stage approach to classifying multidimensional cubes for visualization of multivariate data. In: Cong Vinh, P., Alagar, V. (eds.) ICCASA/ICTCC-2018. LNICST, vol. 266, pp. 70–80. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-06152-4_7CrossRefGoogle Scholar
  13. 13.
    Alexandre, D.S., Tavares, J.M.R.S.: Introduction of human perception in visualization. Int. J. Imaging Robotics™, 4, 60–70 (2010)Google Scholar
  14. 14.
    Nguyen, H.T., Duong, C.K.T., Bui, T.T., Tran, P.V.: Visualization of spatio-temporal data of bus trips. Presented at the IEEE 2012 International Conference on Control, Automation and Information Science, ICCAIS 2012, Hochiminh City, Vietnam (2012)Google Scholar
  15. 15.
    Nguyen, H.T., Ngo, D.N.T., Bui, T.T., Huynh, C.N.T., Tran, P.V.: Visualizing space-time map for bus. In: 6th International Conference on Context-Aware Systems and Applications, and Nature of Computation and Communication, ICCASA 2017, Tam Ky, Vietnam, pp. 38–47 (2017)Google Scholar
  16. 16.
    Nguyen, H.T., Tran, A.V.T., Nguyen, T.A.T., Vo, L.T., Tran, P.V.: Multivariate cube integrated retinal variable to visually represent multivariable data. In: EAI Endorsed Transactions on Context-aware Systems and Applications, vol. 4, pp. 1–8 (2017)Google Scholar
  17. 17.
    Nguyen, H.T., Tran, A.V.T., Nguyen, T.A.T., Vo, L.T., Tran, P.V.: Multivariate cube for representing multivariable data in visual analytics. In: Cong Vinh, P., Tuan Anh, L., Loan, N.T.T., Vongdoiwang Siricharoen, W. (eds.) ICCASA 2016. LNICST, vol. 193, pp. 91–100. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-56357-2_10CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Hong Thi Nguyen
    • 1
  • Lieu Thi Le
    • 2
  • Cam Thi Ngoc Huynh
    • 3
  • Thuan Thi My Pham
    • 4
  • Anh Thi Van Tran
    • 5
  • Dang Van Pham
    • 6
    • 7
  • Phuoc Vinh Tran
    • 4
    Email author
  1. 1.University of Information Technology, Vietnam National University – HCMCHo Chi Minh CityVietnam
  2. 2.Thu Dau Mot UniversityBinhduongVietnam
  3. 3.Kiengiang Department of Education and TrainingKiengiangVietnam
  4. 4.Hochiminh City Open UniversityHochiminh CityVietnam
  5. 5.Hochiminh College of EconomicsHochiminh CityVietnam
  6. 6.Nguyen Tat Thanh UniversityHo Chi Minh CityVietnam
  7. 7.Graduate University of Science and TechnologyHanoiVietnam

Personalised recommendations