Advertisement

Predicting of Flooding in the Mekong Delta Using Satellite Images

  • Hiep Xuan Huynh
  • Tran Tu Thi Loi
  • Toan Phung HuynhEmail author
  • Son Van Tran
  • Thu Ngoc Thi Nguyen
  • Simona Niculescu
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 298)

Abstract

Flooding is a natural risk, large floods have occurred almost every year. These are major issues that researchers are interested and to identify flooded areas or assess the risk of flooding, the researchers using image LiDAR or image RADAR to flood mapping, flood risk management, observation and change detection in floodable area. However, flood modeling or flood assessment don’t solve the problem of flood risks. Therefore, in this paper we propose a new approach of processing methodology based on time series analysis that enables predicting of the floodable areas in the Mekong Delta using new satellite images such as Lansat 7 ETM+, Landsat 8 OLI and sentinel-2 MSI.

Keywords

Assess the risk of flooding Satellite image Modeling of image classification Time series analysis Random forest Decision trees Determining and predicting the flooding area 

References

  1. 1.
    Gao, B.: Ndwi—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58(3), 257–266 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Brivio, P.A., Colombo, R., Maggi, M., Tomasoni, R.: Integration of remote sensing data and GIS for accurate mapping of flooded areas. Int. J. Remote Sens. 12, 429–441 (2002)CrossRefGoogle Scholar
  3. 3.
    Dechoz, C., et al.: Sentinel 2 global reference image (2015)Google Scholar
  4. 4.
    Cassé, C., Viet, P.B., Nhung, P.T.N., Phung, H.P., Nguyen, L.D.: Remote sensing application for coastline detection in CA MAU, Mekong delta. In: International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences (2012)Google Scholar
  5. 5.
    Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995)zbMATHGoogle Scholar
  6. 6.
    Duong, V., Van Trinh, C., Nestmann, F., Oberle, P.: Land use based flood hazards analysis for the mekong delta. In: Proceedings of the 19th IAHR-APD Congress 2014, Hanoi, Vietnam (2014)Google Scholar
  7. 7.
    Christophe, E., Inglada, J., Giros, A.: Orfeo toolbox: a complete solution for mapping from high resolution satellite images. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVII, Part B4, pp. 1263–1268, Beijing (2008)Google Scholar
  8. 8.
    Bonn, F., Dixon, R.: Monitoring flood extent and forecasting excess run off risk with radarsat-1 data. J. Int. Soc. Prev. Mitig. Nat. Hazards 35(3), 377–393 (2005)Google Scholar
  9. 9.
    Nguyen, H.Q., et al.: Water quality dynamics of urban water bodies during flooding in Can Tho city, Vietnam. Water 9(4), 260 (2017)CrossRefGoogle Scholar
  10. 10.
    Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)Google Scholar
  11. 11.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  12. 12.
    NASA: What are the band designations for the Landsat satellites? URL https://landsat.usgs.gov/what-are-band-designations-landsat-satellites
  13. 13.
    Natural Disaster Risk Assessment and Area Business Continuity Plan Formulation for Industrial Agglomerated Areas in the ASEAN Region. Japan International Cooperation Agency OYO International Corporation Mitsubishi Research Institute, Inc. CTI Engineering International Co., Ltd. March (2015)Google Scholar
  14. 14.
    OTB Development Team. Orfeo toolbox 5.4. July 2016Google Scholar
  15. 15.
    Dao, P.D., Liou, Y.-A.: Object-based flood mapping and affected rice field estimation with landsat 8 oli and modis data. Remote Sens. 7(5), 5077–5097 (2015)CrossRefGoogle Scholar
  16. 16.
    Potcoava, M.C., Stancalie, G., Raducanu, D.: The using of satellite image data from optic and microwaves data for development of a methodology for identification and extraction of flooded area. Int. Arch. Photogrammetry Remote Sens. 6, 1185–1190 (2000)Google Scholar
  17. 17.
    QGIS Development Team: QGIS Geographic Information System. Open Source Geospatial Foundation (2009). http://qgis.osgeo.org
  18. 18.
    Brinkmann, R.: The Art and Science of Digital Compositing. The Morgan Kaufmann Series in Computer Graphics, 2 edn., pp. 149–188 (2008)Google Scholar
  19. 19.
    McFEETERS, S.K.: The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17(7), 1425–1432 (1996)CrossRefGoogle Scholar
  20. 20.
    Niculescu, S., Lardeux, C., Hanganu, J., David, L., Mercier, G.: Change detection in floodable areas of the Danube delta using radar images. Nat. Hazards J. Int. Soc. Prev. Mitig. Nat. Hazards 78(3), 1899–1916 (2015)Google Scholar
  21. 21.
    Niculescu, S., Lardeux, C., Hanganu, J.: Synergy between SENTINEL-1 radar time series and Sentinel-2 optical for the mapping of restored areas in Danube delta. In: Proceedings of the International Cartographic Association, vol. 1 (2017)Google Scholar
  22. 22.
    Niculescu, S., Lardeux, C., Guttler, F., Rudant, J.-P.: Multisensor systems and flood risk management application to the danube delta using radar and hyperspectral imagery. Teledetection 9(3–4), 271–288 (2010)Google Scholar
  23. 23.
    McFeeters, S.K.: Using the normalized difference water index (NDWI) within a geographic information system to detect swimming pools for mosquito abatement: a practical approach. Remote Sens. 5(7), 3544–3561 (2013)CrossRefGoogle Scholar
  24. 24.
    Sakamoto, T., Van Nguyen, N., Kotera, A., Ohno, H., Ishitsuka, N., Yokozawa, M.: Detecting temporal changes in the extent of annual flooding within the cambodia and the vietnamese mekong delta from modis time-series imagery. Remote Sens. Environ. 109(3), 295–313 (2007)CrossRefGoogle Scholar
  25. 25.
    Bertin, X.: A modeling-based analysis of the flooding associated with xynthia, central bay of biscay. Coast. Eng. 94, 80–89 (2014)CrossRefGoogle Scholar
  26. 26.
    Zhou, Y., et al.: Open surface water mapping algorithms: a comparison of water-related spectral indices and sensors. Water 9, 256–272 (2017)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2019

Authors and Affiliations

  • Hiep Xuan Huynh
    • 1
  • Tran Tu Thi Loi
    • 2
  • Toan Phung Huynh
    • 1
    Email author
  • Son Van Tran
    • 3
  • Thu Ngoc Thi Nguyen
    • 3
  • Simona Niculescu
    • 4
  1. 1.Cantho UniversityCanthoVietnam
  2. 2.Fsoft CanthoCan ThoVietnam
  3. 3.Kiengiang Medical CollegeRạch GiáVietnam
  4. 4.Université de Bretagne Occidentale - UBOBrestFrance

Personalised recommendations