Advertisement

Industrial Minerals and Rocks

  • Florian NeukirchenEmail author
  • Gunnar Ries
Chapter
  • 117 Downloads

Abstract

When it comes to mineral deposits very few people think of sand and gravel despite such commodities being consumed in far greater quantities than metals. Raw materials such as natural stone, lime, clay, kaolin, gravel, and sand are referred to as industrial minerals and rocks. In Germany 600 million tonnes of these are extracted each year from quarries, dredging lakes, sand pits, and gravel pits.

Literature

  1. Bucher, K., and R. Grapes. 2011. Petrogenesis of Metamorphic Rocks, 8th ed. Heidelberg: Springer.CrossRefGoogle Scholar
  2. Chiang, Y.-M., D. Birnie, and D. Kingery. 1997a. Physical Ceramics: Principles for Ceramic Science and Engineering. New York: Wiley.Google Scholar
  3. Feenstra, A., and B. Wunder. 2002. Dehydration of diasporite to corundite in nature and experiment. Geology 30: 119–122.CrossRefGoogle Scholar
  4. Gauckler, L.J. 2005. Materialwisenschaft I: Keramik. ETH Zürich: Vorlesungsskript.Google Scholar
  5. Jackson, M.D., S.R. Chae, R. Taylor, P. Li, C. Meral, S.R. Mulcahy, A.M. Emwas, J. Moon, S. Yoon, G. Vola, H.-R. Wenk, and P.J.M. Monteiro. 2013. Unlocking the secrets of Al-tobermorite in Roman seawater concrete. American Mineralogist (in Press).Google Scholar
  6. Krause, S., V. Liebetrau, S. Gorb, M. Sánchez-Román, J.A. McKenzie, and T. Treude. 2012. Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: New insight into an old enigma. Geology 40: 587–590.CrossRefGoogle Scholar
  7. Kwiecinska, B., and H.I. Petersen. 2004. Graphite, semi-graphite, natural coke, and natural char classification—ICCP system. International Journal of Coal Geology 57: 99–116.CrossRefGoogle Scholar
  8. McKenzie, J.A., and C. Vasconcelos. 2009. Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: Historical developments and new perspectives. Sedimentology 56: 205–219.CrossRefGoogle Scholar
  9. Neukirchen, F. 2012a. Edelsteine: Brillante Zeugen für die Erforschung der Erde. Heidelberg: Springer Spektrum.CrossRefGoogle Scholar
  10. Pasteris, J.D. 1999. Causes of the uniformly high crystallinity of graphite in large epigenetic deposits. Journal of Metamorphic Geology 17: 779–787.CrossRefGoogle Scholar
  11. Richerson, D.. 2006. Modern Ceramic Engineering. Properties, Processing and Use in Design. Oxford: Taylor & Francis.Google Scholar
  12. Routschka, G., and H. Wuthnow (eds.). 2007. Taschenbuch Feuerfeste Werkstoffe. Aufbau, Eigenschaften Prüfung, 4th ed. Essen: Vulkan-Verlag.Google Scholar
  13. Touzain, P., N. Balasooriya, K. Bandaranayake, and C. Descolas-Gros. 2010. Vein graphite from the Bogala and Kahatagaha-Kolongaha-mines, Sri Lanka: A possible origin. Canadian Mineralogist 48: 1373–1384.CrossRefGoogle Scholar

Further Reading

  1. Chiang, Y.-M., D. Birnie, and D. Kingery. 1997b. Physical Ceramics: Principles for Ceramic Science and Engineering. New York: Wiley.Google Scholar
  2. Neukirchen, F. 2012b. Edelsteine: Brillante Zeugen für die Erforschung der Erde. Heidelberg: Springer Spektrum.CrossRefGoogle Scholar
  3. Okrusch, M., and S. Matthes. 2009. Mineralogie: Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde, 8th ed. Heidelberg: Springer.Google Scholar
  4. Patton, T.C. 1973. Pigment Handbook. New York: Wiley.Google Scholar
  5. Pohl, W.L. 2011. Economic Geology. Chichester: Wiley-Blackwell.Google Scholar
  6. Rothe, P. 2010. Schätze der Erde. Darmstadt: Primus Verlag.Google Scholar
  7. Seidler, C. 2012. Deutschlands verborgene Rohstoffe: Kupfer. Hanser, München: Gold und seltene Erden.CrossRefGoogle Scholar
  8. US Geological Survey. Mineral Yearbooks. http://minerals.usgs.gov/minerals/pubs/myb.html.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.BerlinGermany
  2. 2.MarxenGermany

Personalised recommendations