Group-Based Key Exchange Protocol Based on Complete Decomposition Search Problem
Abstract
Let G be a finite non-abelian group. Let \(A_1,\cdots , A_k\) be non-empty subsets of G, where \(k\ge 2\) is an integer such that \(A_i\cap A_j = \emptyset \) for integers \(i,j= 1,\cdots , k\) \((i \ne j)\). We say that \((A_1, \cdots , A_k)\) is a complete decomposition of G if the product of subsets \(A_{i_1} \cdots A_{i_k} = \{a_{i_1}...a_{i_k} | a_{i_j}\in A_{i_j}; j=1,\cdots , k\}\) coincides with G where the \(A_{i_j}\) are all distinct and \(\{A_{i_1},\cdots , A_{i_k}\}= \{A_1,\cdots , A_k\}\). The complete decomposition search problem in G is defined as recovering \(B \subseteq G\) from given A and G such that \(AB=G\). The aim of this paper is twofold. The first aim is to propose the complete decomposition search problem in G. The other objective is to provide a key exchange protocol based on the complete decomposition search problem using generalized quaternion group \(Q_{2^n}\) as the platform group for integer \(n \ge 3\). In addition, we show some constructions of complete decomposition of generalized quaternion group \(Q_{2^n}\). Further, we propose an algorithm that can solve computational complete decomposition search problem and show that the algorithm takes exponential time to break the scheme.
Keywords
Group-based key exchange protocol Complete decomposition search problem Nonabelian groupNotes
Acknowledgments
The project was funded by the Fundamental Research Grant Scheme (FRGS), project number FRGS/1/2017/STG06/UTAR/02/3.
References
- 1.Anshel, I., Anshel, M., Goldfeld, D.: An algebraic method for public-key cryptography. Math. Res. Lett. 6, 287–291 (2001)MathSciNetCrossRefGoogle Scholar
- 2.Baba, S., Kotyada, S., Teja, R.: A non-abelian factorization problem and an associated cryptosystem. Cryptology Eprint Archive Report 2011/048 (2011)Google Scholar
- 3.Bernstein, D.J., Lange, T.: Post-quantum cryptography dealing with the fallout of physics success. IACR Cryptology Eprint Archive/2017/314 (2017)Google Scholar
- 4.Boudot, F.: On improving integer factorization and discrete logarithm computation using partial triangulation. Cryptology Eprint Archive Report 2017/758 (2017)Google Scholar
- 5.Chin, A.Y.M., Chen, H.V.: Complete decompositions of finite abelian groups. AAECC 30, 263–274 (2018)MathSciNetCrossRefGoogle Scholar
- 6.Chin, A.Y.M.: Exhaustion numbers of maximal sum-free sets of certain cyclic groups. Matematika 15(1), 57–63 (2009)Google Scholar
- 7.Dehornoy, P.: Braid-based cryptography. Contemp. Math. 360, 5–33 (2004)MathSciNetCrossRefGoogle Scholar
- 8.Wong, C.K.D., Wong, K.W., Yap, W.S.: Exhaustion 2-subsets in dihedral groups of order 2\(p\). Asian Eur. J. Math. World Sci. Publ. Co. 11(3), 1–13 (2018)Google Scholar
- 9.Diffie, W., Hellman, M.E.: New direction in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)MathSciNetCrossRefGoogle Scholar
- 10.Fine, B., Habeeb, M., Kahrobaei, D., Rosenberger, G.: Aspects of nonabelian group based cryptography: a survey and open problems. JP J. Algebra Number Theorie Appl. 21, 1–40 (2011)MathSciNetzbMATHGoogle Scholar
- 11.Goldwasser, S., Kalai, Y.T.: Cryptographic Assumptions: A Position Paper. TCC, pp. 505–522 (2015)Google Scholar
- 12.Gu, L., Zheng, S.: Conjugacy systems based on nonabelian factorization problems and their applications in cryptography. J. Appl. Math. 52(2), 1–9 (2014)MathSciNetGoogle Scholar
- 13.Hajos, G.: Covering multidimensional spaces by cube lattices. Mat. Fiz. Lapok 45, 171–190 (1938)Google Scholar
- 14.Hajos, G.: Uber Einfache und Mehrfache Bedeckung des n-dimensionalen Raumes Mit Einem Urfelgitter. Math. Zeit. 47, 427–467 (1942)MathSciNetCrossRefGoogle Scholar
- 15.Hajos, G.: Sur la Factorisation des Groupes Abeliens. Casopis Pes. Mat. Fys. 74, 157–162 (1949)MathSciNetzbMATHGoogle Scholar
- 16.Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J., Park, C.: New public-key cryptosystem using braid groups. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 166–183. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_10CrossRefGoogle Scholar
- 17.Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefGoogle Scholar
- 18.Shor, P.W.: Polynomial-time algorithm for prime factorization and discrete logarithms on quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefGoogle Scholar
- 19.Shpilrain, V., Ushakov, A.: Thompson’s group and public key cryptography. In: 3rd International Conference on Applied Cryptography and Network Security, ACNS 2005, pp. 151–163 (2005)Google Scholar
- 20.Shpilrain, V., Ushakov, A.: The conjugacy search problem in public key cryptography: unnecessary and insufficient. Appl. Algebra Eng. Commun. Comput. 17, 285–289 (2006)MathSciNetCrossRefGoogle Scholar
- 21.Ustimenko, V., Klisowski, M.: On noncommutative cryptography and homomorphism of stable cubical multivariate transformation groups of infinite dimensional affine spaces. Cryptology Eprint Archive Report 2019/593 (2019)Google Scholar
- 22.Ustimenko, V.: On inverse protocol of post quantum cryptography based on pairs of noncommutative multivariate platforms used in tandem. Cryptology Eprint Archive Report 2019/897 (2019)Google Scholar
- 23.Blakley, G.R., Chaum, D. (eds.): CRYPTO 1984. LNCS, vol. 196. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7CrossRefGoogle Scholar
- 24.Yana, K., Yulia, K.: Merkle-Hellman knapsack cryptosystem in undergraduate computer science curriculum. FECS, pp. 123–128 (2010)Google Scholar
- 25.Zhu, H.: Survey of computational assumptions used in cryptography broken or not by shor’s algorithm. Master in Science, Mc Gill University Montreal (2001)Google Scholar