Advertisement

Privacy Preserving Approach in Dynamic Social Network Data Publishing

  • Kamalkumar MacwanEmail author
  • Sankita Patel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11879)

Abstract

In recent years, social networks have gained special attention to share information and to maintain a relationship with other people. As the data produced from such platforms are being analyzed, the privacy preservation methods must be applied before making the data publicly available. The anonymization techniques consider one-time releases and do not re-publish the dynamic social network data. The relationship between individuals changes with time so it may breach user privacy in dynamic social networks. In this paper, we propose an anonymization approach to preserve the user identity from all the published time-series dataset of a social network.

Multiple instances of the social network may allow the adversary to identify the user by joining the information together. The existing anonymization methods for a single instance of a social network are not enough to preserve user privacy across multiple instances. Moreover, it requires all instances together for the social graph anonymization process. We proposed a method that anonymizes the current instance of the social graph and publishes it as soon as the instance is available. The proposed anonymization technique modifies the current social graph irrespective of further instances. The average relative error calculates the deviation in query results for different privacy levels. The experimental results highlight that the proposed approach generates fewer dummy nodes.

Keywords

Social network data publishing Privacy k-anonymity Time-series social dataset 

References

  1. 1.
    Hay, M., Miklau, G., Jensen, D., Towsley, D., Li, C.: Resisting structural re-identification in anonymized social networks. VLDB J. Int. J. Very Large Data Bases 19(6), 797–823 (2010)CrossRefGoogle Scholar
  2. 2.
    Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 93–106. ACM (2008)Google Scholar
  3. 3.
    Zou, L., Chen, L., Özsu, M.T.: K-automorphism: a general framework for privacy preserving network publication. Proc. VLDB Endow. 2(1), 946–957 (2009)CrossRefGoogle Scholar
  4. 4.
    Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore art thou R3579X? Anonymized social networks, hidden patterns, and structural steganography. In: Proceedings of the 16th International Conference on World Wide Web, pp. 181–190. ACM (2007)Google Scholar
  5. 5.
    Zhou, B., Pei, J., Luk, W.: A brief survey on anonymization techniques for privacy preserving publishing of social network data. ACM SIGKDD Explor. Newsl. 10(2), 12–22 (2008)CrossRefGoogle Scholar
  6. 6.
    Wu, X., Ying, X., Liu, K., Chen, L.: A survey of privacy-preservation of graphs and social networks. In: Aggarwal, C., Wang, H. (eds.) Managing and Mining Graph Data. ADBS, vol. 40, pp. 421–453. Springer, Boston (2010).  https://doi.org/10.1007/978-1-4419-6045-0_14CrossRefGoogle Scholar
  7. 7.
    Bhagat, S., Cormode, G., Krishnamurthy, B., Srivastava, D.: Class-based graph anonymization for social network data. Proc. VLDB Endow. 2(1), 766–777 (2009)CrossRefGoogle Scholar
  8. 8.
    Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood attacks. In: 2008 IEEE 24th International Conference on Data Engineering, ICDE 2008, pp. 506–515. IEEE (2008)Google Scholar
  9. 9.
    Wang, C.-J.L., Wang, E.T., Chen, A.L.P.: Anonymization for multiple released social network graphs. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 99–110. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-37456-2_9CrossRefGoogle Scholar
  10. 10.
    Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(05), 557–570 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: 2009 30th IEEE Symposium on Security and Privacy, pp. 173–187. IEEE (2009)Google Scholar
  12. 12.
    Macwan, K.R., Patel, S.J.: Mutual friend attack prevention in social network data publishing. In: Ali, S.S., Danger, J.-L., Eisenbarth, T. (eds.) SPACE 2017. LNCS, vol. 10662, pp. 210–225. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71501-8_12CrossRefGoogle Scholar
  13. 13.
    Song, Y., Karras, P., Xiao, Q., Bressan, S.: Sensitive label privacy protection on social network data. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 562–571. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31235-9_37CrossRefGoogle Scholar
  14. 14.
    Wang, K., Fung, B.: Anonymizing sequential releases. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 414–423. ACM (2006)Google Scholar
  15. 15.
    Xiao, X., Tao, Y.: M-invariance: towards privacy preserving re-publication of dynamic datasets. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 689–700. ACM (2007)Google Scholar
  16. 16.
    Tai, C.-H., Tseng, P.-J., Philip, S.Y., Chen, M.-S.: Identity protection in sequential releases of dynamic networks. IEEE Trans. Knowl. Data Eng. 26(3), 635–651 (2014)CrossRefGoogle Scholar
  17. 17.
    Wang, Y., Qiu, F., Wu, F., Chen, G.: Resisting label-neighborhood attacks in outsourced social networks. In: 2014 IEEE International Performance Computing and Communications Conference (IPCCC), pp. 1–8. IEEE (2014)Google Scholar
  18. 18.
    Bhagat, S., Cormode, G., Srivastava, D., Krishnamurthy, B.: Prediction promotes privacy in dynamic social networks. In: WOSN (2010)Google Scholar
  19. 19.
    Medforth, N., Wang, K.: Privacy risk in graph stream publishing for social network data. In: 2011 IEEE 11th International Conference on Data Mining (ICDM), pp. 437–446. IEEE (2011)Google Scholar
  20. 20.
    Liu, L., Wang, J., Liu, J., Zhang, J.: Privacy preserving in social networks against sensitive edge disclosure. Technical Report CMIDA-HiPSCCS 006–08, Department of Computer Science, University of Kentucky, KY (2008)Google Scholar
  21. 21.
    Liu, X., Yang, X.: A generalization based approach for anonymizing weighted social network graphs. In: Wang, H., Li, S., Oyama, S., Hu, X., Qian, T. (eds.) WAIM 2011. LNCS, vol. 6897, pp. 118–130. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23535-1_12CrossRefGoogle Scholar
  22. 22.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)CrossRefGoogle Scholar
  23. 23.
    Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)CrossRefGoogle Scholar
  24. 24.
    Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summarization. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 567–580. ACM (2008)Google Scholar
  25. 25.
    Macwan, K.R., Patel, S.J.: k-degree anonymity model for social network data publishing. Adv. Electr. Comput. Eng. 17(4), 117–124 (2017)CrossRefGoogle Scholar
  26. 26.
    Yuan, M., Chen, L., Yu, P.S.: Personalized privacy protection in social networks. Proc. VLDB Endow. 4(2), 141–150 (2010)CrossRefGoogle Scholar
  27. 27.
    Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)CrossRefGoogle Scholar
  28. 28.
    Dheeru, D., Karra Taniskidou, E.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Sardar Vallabhbhai National Institute of TechnologySuratIndia

Personalised recommendations